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Introduction

Lattice strategies to study the large-/N limit can be broadly divided into:

@ Standard approach: extended lattices with periodic boundary conditions +
extrapolation from N < 10

o Twisted Eguchi—-Kawai (TEK) reduced models: single-site lattice
with twisted boundary conditions = N > 100, practically works directly
at N = oo

Complementary approaches: agreement among them is highly non-trivial,
standard approach necessary for sub-leading effects in 1/N.

Many large-N calculations within TEK models:
@ String tension o |Gonzélez-Arroyo et al., 2013; 1206.0049]
@ QCD running coupling [Garcia Pérez, 2014; 1412.0941]
@ QCD scale Aqcp [see P. Butti’s talk]
@ Meson masses [Garcia Pérez et al., 2020; 2011.13061]
@ Ongoing studies with adjoint fermions at large-N [Butti et al., 2205.03166]
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The chiral condensate

Computation of a new observable within the TEK model:
the chiral condensate.
Y=-—1 li u = =m.
M0V e (), M =Md =1
Many QCD computations for various Ny in the last 10 years,
but just few large-N estimations (all using just 1 lattice spacing)
[Narayanan & Neuberger, 2003; hep-lat/0405025] [Hernandez et al., 2019; 1907.11511].

In the 't Hooft limit 1/N — 0 and N;y/N — 0:

@ Solid computation of the large-N limit of X /N for Ny = 0:
4 values of lat. spac. a and 3 values of m, for each a
—> controlled continuum and chiral extrapolations.

@ Strategy: Giusti-Liischer method [arXiv:0812.3638]
to extract ¥ from mode number of the Dirac operator.
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TEK model: Wilson action

Lattice TEK action: one-site Wilson plaquette action with inverse 't Hooft
coupling b and twisted boundary conditions, no dynamical quarks.

SwlU]=—=Nb3_, 4, Tr {U,(n)U, (n + aﬂ)U;E(n + ar)Uf(n)}

Reduction

@ U,(n) — U, (one site = L =1, only d = 4 links)
e U,(n+av)=T,U,TI} (twisted boundary conditions)

e U, — U,I', (change of variables)

Srex[U] = =Nb Y _ 2, Tr {UUU}U]}
120

o Twist-eaters I',I'), = 2,,I',I',, with twist factor z,, = exp {27riksyu/\/N}

e Effective box size L = VN
@ Large-N volume independence: for any given closed path P
2(P) (W(P))rek Njoo <W(,P)>£400;N4>oo
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TEK model: Wilson fermions

We will consider 1 valence fundamental quark flavor.
We will use the Wilson discretization.

For fermions, calculation of reduction is much more involved,
see, e.g., [Gonzalez-Arroyo & Okawa, 2015; arXiv:1510.05428].
Here we just give directly our TEK discretized Dirac—Wilson operator:

d—1

11
D™ = — — SN I+ 9) @ U, @ T +heel.
n=0

W 2% 2

For the purpose of computing the mode number, we will solve numerically
the following eigenproblem using the ARPACK library:
QWu)\ = )\’LL)\, A€ IR7
where we have introduced the Hermitian operator

Qw = 75D$EK), QL = Qw.
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Chiral condensate from the mode number

Banks—Casher relates the chiral condensate with spectral density in the origin:

— =lim lim lim p(\,m)
s A—=0m—0V o0

The mode number is essentially equivalent to p,
but is more amenable to be computed on the lattice:

w(M)) = (#lix+m|< M)

A
V/ p(\, m)dA\, A? = M? —m?.
—A

@ Banks—Casher implies linear rise of (v(M)) close to M = m:
2 2
(v(M)) = =VEA+o(A) = =VEM + o(M).
7r 7r

@ Giusti—Liischer method: obtain X from slope of mode number as

LN m? {8@(]\1))

%(m)

=37 e oM ] +— slope of (v(M)) vs M.
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(vr(Mg))/N
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Fit of the mode number for N = 289 and m,/\/oc = 1.25

Implementation of Giusti-Liischer method:

Solve numerically (v5Dw)ux = Auy

Count modes below treshold M to obtain (v(M))
Slope: linear best fit of (v(M)) vs M close to M/m =1

Y=gp/1- A’Z—z [d<'j[<jﬁj)>] +—slope of (v(M)) vs M from linear fit

Ny =0, N =289, m,/\/a =125
% ]

b=10.355
b= 0.360
b=0.365
b=0.370

]
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The chiral condensate at large N

Renormalization:
v)=(w), Mr=M/Zp
Ar = M/ Zp.

We know ZAmpCAC = meR
on our ensembles
= we count # |Ar|/mr < Mp/mg.

From the fit of (vgr) /N we extract the
RG-invariant quantity Ygmg/(c?N).
Using Zpmg and /o, we finally obtain
the bare condensate g /(03> N Zp).
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Chiral limit at fixed lattice spacing
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The chiral condensate at large N

Chiral Perturbation Theory
predicts:

YX(m)=X+km
—

Our results perfectly described by:
S(mi,b) = B(b) + k(b) m

Perfect agreement with
expectations.

Plot on the left refers to
bare quantity ¥/N = X /(N Zp).

Conversion to MeV units done using
conventional value /o = 440 MeV.
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Continuum limit

We do not have a calculation of Zp alone from the TEK model.
Non-perturbative large-N results for Zp in the range of a used in this work can be
found in [Castagnini, 2015; inspirehep/1411974]. Significant deviations from

perturbative estimates obtained from various improved couplings.
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Continuum limit assuming O(a?) corrections = Yr/N = [189(17) MeV]?
FLAG21 SU(3) Ny =2: $g = [266(10) MeV]? = ¥y /N = [184(7) MeV]?
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Conclusions

Take-home messages

o Computation of the large-N chiral condensate from TEK models
using the Giusti—Liischer spectral method for N = 289, 4 lattice
spacings and 3 pion masses each

o Controlled continuum and chiral extrapolations lead to
Yr/N = [189(17) MeV]3, which is in remarkable agreement with the
FLAG21 world-average for 2-flavor QCD Y /N = [184(7) MeV]?
when using /o to set the scale

e Our calculation suggests that 1/N? corrections are small and N = 3

is already very close to N = oco. Such conclusion fits very well with
other large-V calculations pointing towards the same scenario

Future outlooks

o Compare with calculation from quark mass dependence of m,

e Extend calculation to the case of adjoint fermions (interesting for
BSM phenomenology)
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BACK-UP SLIDES




Check of finite-N effects

Exploring m,¢ = myav N ~3.9,5.1,5.7 we observe Finite Size Effects (FSEs),

i.e., finite-V effects, in the spectral density p just in the smallest bins,

while plateaus are perfectly agreeing
= no significant FSEs in the slope of (v) /V, and thus in the condensate.

. ms/\/o =125, b=0.355, k = 0.1610
30

b= 0.355, m/\/g ~1.25

0.05 S
% N =169 3 N =169, m.l~392 F
N2 N =289, m Ii
HEs. ] oof T NamnIin
— 58
= 2 N I
K } = 0.03 o
g 1 < 0.02 ﬁfﬁ
£ i l § E H;;I
I ~ 001 e
o 252
) l % .aﬂﬁﬂi
L 0.00 #mmmmss mi ‘
(](J.(J 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 ) L 2 3
Ar/mr ﬂfr{/ MR
N =169 — [Sr/(NZp)]'/3 = 254(9) MeV
N =289 — [Sr/(NZp)]'/3 = 254(2) MeV
N =361 — [Sr/(NZp)]'/3 = 256(3) MeV
C. Bonanno (IFT UAM/CSIC Madrid) The chiral condensate at large N 31/07/23 10/9



