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Introduction
Lattice strategies to study the large-N limit can be broadly divided into:

Standard approach: extended lattices with periodic boundary conditions +
extrapolation from N < 10

Twisted Eguchi–Kawai (TEK) reduced models: single-site lattice
with twisted boundary conditions =⇒ N > 100, practically works directly
at N =∞

Complementary approaches: agreement among them is highly non-trivial,
standard approach necessary for sub-leading effects in 1/N .

Many large-N calculations within TEK models:

String tension σ [González-Arroyo et al., 2013; 1206.0049]

QCD running coupling [García Pérez, 2014; 1412.0941]

QCD scale ΛQCD [see P. Butti’s talk]

Meson masses [García Pérez et al., 2020; 2011.13061]

Ongoing studies with adjoint fermions at large-N [Butti et al., 2205.03166]
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The chiral condensate
Computation of a new observable within the TEK model:

the chiral condensate.

Σ ≡ − lim
m→0

lim
V→∞

〈uu〉 , mu = md ≡ m.

Many QCD computations for various Nf in the last 10 years,
but just few large-N estimations (all using just 1 lattice spacing)

[Narayanan & Neuberger, 2003; hep-lat/0405025] [Hernandez et al., 2019; 1907.11511].

In the ’t Hooft limit 1/N → 0 and Nf/N → 0:

Σ(N) = N

[
Σ +O

(
1

N2

)]
Outline of our work

Solid computation of the large-N limit of Σ/N for Nf = 0:
4 values of lat. spac. a and 3 values of mπ for each a

=⇒ controlled continuum and chiral extrapolations.

Strategy: Giusti–Lüscher method [arXiv:0812.3638]
to extract Σ from mode number of the Dirac operator.
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TEK model: Wilson action
Lattice TEK action: one-site Wilson plaquette action with inverse ’t Hooft

coupling b and twisted boundary conditions, no dynamical quarks.

SW[U ] = −Nb∑n,ν 6=µ Tr
{
Uµ(n)Uν(n+ aµ̂)U†µ(n+ aν̂)U†ν (n)

}
Reduction

Uµ(n) −→ Uµ (one site =⇒ L = 1, only d = 4 links)

Uµ(n+ aν̂) = ΓνUµΓ†ν (twisted boundary conditions)

Uµ −→ UµΓµ (change of variables)

STEK[U ] = −Nb
∑
ν 6=µ

zνµTr
{
UµUνU

†
µU
†
ν

}
Twist-eaters ΓµΓν = zνµΓνΓµ with twist factor zνµ = exp

{
2πikενµ/

√
N
}

Effective box size L =
√
N

Large-N volume independence: for any given closed path P
z(P) 〈W (P)〉TEK →

N→∞
〈W (P)〉`→∞;N→∞
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TEK model: Wilson fermions

We will consider 1 valence fundamental quark flavor.
We will use the Wilson discretization.

For fermions, calculation of reduction is much more involved,
see, e.g., [González-Arroyo & Okawa, 2015; arXiv:1510.05428].

Here we just give directly our TEK discretized Dirac–Wilson operator:

D
(TEK)
W =

1

2κ
− 1

2

d−1∑
µ=0

[
(I + γµ)⊗ Uµ ⊗ Γ∗µ + h.c.

]
.

For the purpose of computing the mode number, we will solve numerically
the following eigenproblem using the ARPACK library:

QWuλ = λuλ, λ ∈ R,

where we have introduced the Hermitian operator

QW ≡ γ5D(TEK)
W , Q†W = QW.
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Chiral condensate from the mode number
Banks–Casher relates the chiral condensate with spectral density in the origin:

Σ

π
= lim
λ→0

lim
m→0

lim
V→∞

ρ(λ,m)

The mode number is essentially equivalent to ρ,
but is more amenable to be computed on the lattice:

〈ν(M)〉 ≡ 〈# |iλ+m| ≤M〉

= V

∫ Λ

−Λ

ρ(λ,m)dλ, Λ2 ≡M2 −m2.

Banks–Casher implies linear rise of 〈ν(M)〉 close to M = m:

〈ν(M)〉 =
2

π
V ΣΛ + o(Λ) =

2

π
V ΣM + o(M).

Giusti–Lüscher method: obtain Σ from slope of mode number as

Σ(m) =
π

2V

√
1− m2

M2

[
∂ 〈ν(M)〉
∂M

]
←− slope of 〈ν(M)〉 vs M.
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Fit of the mode number for N = 289 and mπ/
√
σ = 1.25

Implementation of Giusti–Lüscher method:

Solve numerically (γ5DW)uλ = λuλ

Count modes below treshold M to obtain 〈ν(M)〉
Slope: linear best fit of 〈ν(M)〉 vs M close to M/m = 1

Σ = π
2V

√
1− m2

M2

[
d〈ν(M)〉
dM

]
←−slope of 〈ν(M)〉 vs M from linear fit
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Renormalization:
〈ν〉 = 〈νR〉 , MR = M/ZP

λR = λ/ZP.

We know ZAmPCAC = ZPmR

on our ensembles
=⇒ we count # |λR|/mR ≤MR/mR.

From the fit of 〈νR〉 /N we extract the
RG-invariant quantity ΣRmR/(σ

2N).

Using ZPmR and
√
σ, we finally obtain

the bare condensate ΣR/(σ
3/2NZP).
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Chiral limit at fixed lattice spacing
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Chiral Perturbation Theory
predicts:

Σ(m) = Σ + km

−→

Our results perfectly described by:
Σ(m2

π, b) = Σ(b) + k̃(b)m2
π

Perfect agreement with
expectations.

Plot on the left refers to
bare quantity Σ/N = ΣR/(NZP).

Conversion to MeV units done using
conventional value

√
σ = 440 MeV.
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Continuum limit
We do not have a calculation of ZP alone from the TEK model.

Non-perturbative large-N results for ZP in the range of a used in this work can be
found in [Castagnini, 2015; inspirehep/1411974]. Significant deviations from

perturbative estimates obtained from various improved couplings.
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Nf = 0, N = 289

From 〈νR〉 fit

Continuum limit assuming O(a2) corrections =⇒ ΣR/N = [189(17) MeV]3

FLAG21 SU(3) Nf = 2: ΣR = [266(10) MeV]3 =⇒ ΣR/N = [184(7) MeV]3
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Conclusions
Take-home messages

Computation of the large-N chiral condensate from TEK models
using the Giusti–Lüscher spectral method for N = 289, 4 lattice
spacings and 3 pion masses each
Controlled continuum and chiral extrapolations lead to
ΣR/N = [189(17) MeV]3, which is in remarkable agreement with the
FLAG21 world-average for 2-flavor QCD ΣR/N = [184(7) MeV]3

when using
√
σ to set the scale

Our calculation suggests that 1/N2 corrections are small and N = 3
is already very close to N =∞. Such conclusion fits very well with
other large-N calculations pointing towards the same scenario

Future outlooks
Compare with calculation from quark mass dependence of mπ

Extend calculation to the case of adjoint fermions (interesting for
BSM phenomenology)

C. Bonanno (IFT UAM/CSIC Madrid) The chiral condensate at large N 31/07/23 9/9



Back-up slides



Check of finite-N effects
Exploring mπ` = mπa

√
N ' 3.9, 5.1, 5.7 we observe Finite Size Effects (FSEs),

i.e., finite-N effects, in the spectral density ρ just in the smallest bins,
while plateaus are perfectly agreeing

=⇒ no significant FSEs in the slope of 〈ν〉 /V , and thus in the condensate.
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b = 0.355, mπ/
√
σ ≃ 1.25

N = 169, mπℓ ≃ 3.92

N = 289, mπℓ ≃ 5.12

N = 361, mπℓ ≃ 5.72

N = 169 −→ [ΣR/(NZP)]1/3 = 254(9) MeV
N = 289 −→ [ΣR/(NZP)]1/3 = 254(2) MeV
N = 361 −→ [ΣR/(NZP)]1/3 = 256(3) MeV
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