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Schwinger model [1]

▶ Represents two-dimensional QED.

▶ Shares properties with QCD: confinement, chiral symmetry breaking,
topology [2].

▶ For Nf massless fermions, it has been shown in the framework of

bosonization that a boson with mass Mη =
√
Nfg2/π, together with

Nf − 1 massless bosons (“pions”) appear [3,4].
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▶ Some works assume N2
f − 1 pions, which matches the number of

Nambu-Goldstone bosons of the breaking pattern
SU(Nf )× SU(Nf ) → SU(Nf ) [5].

▶ The “pion” decay constant has been considered in the two-flavor Schwinger
model before through the relation [6]

⟨0|∂µJ5
µ(0)|π(p)⟩ = M2

πFπ,

where J5
µ is the axial current and Mπ is the “pion” mass. Ref. [6] obtains,

for two degenerate fermions in a light-cone formulation,

Fπ(m) = 0.394518(14) + 0.040(1)m/g.

▶ We are interested in Fπ in the chiral limit.

[5] C. Gattringer and E. Seiler, Annals Phys. 233 (1994).

[6] K. Harada et al, Phys. Rev. D 49 (1994).
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Other ways of determining Fπ

▶ Ref. [7] shows that

Σ =
M2

π

4πm
.

On the other hand, the Gell-Mann–Oakes–Renner relation in QCD reads

F 2
π (m) =

2m

M2
π

Σ.

If we push the analogy with the Schwinger model further, we obtain

Fπ =
1√
2π

≃ 0.3989.

[7] Y. Hosotani and R. Rodriguez, J. Phys. A 31 (1998).
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GMOR relation
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▶ The Witten-Veneziano formula [8] has been shown to be exact in the
Schwinger model in the chiral limit [9]

M2
η =

2Nf

F 2
η

χq
t ,

where

M2
η =

Nfg
2

π
, χq

t =
g2

4π2
.

Then

Fη =
1√
2π

.

In large-Nc QCD both Fη and Fπ are asymptotically equal. If we push, once
again, the analogy between QCD and the Schwinger model we obtain

Fπ =
1√
2π

.
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δ-regime

▶ We perform simulations in the δ-regime: Lt ≫ 1
Mπ

≳ L.

▶ The small spatial volume allows one to consider the model as a quasi
one-dimensional system, approximated by a quantum mechanical rotor [10].

▶ The pion has a residual mass in the chiral limit

m → 0 ⇒ Mπ → MR
π =

Nπ

2Θeff

> 0,

where Θeff is the effective moment of inertia.

[10] H. Leutwyler, Phys. Lett. B 189 (1987).
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▶ Leutwyler computed Θeff = F 2
πL

3 to leading order.

▶ Hasenfratz and Niedermayer [11] computed the moment of inertia to
next-to-leading order in d > 2

Θeff = F 2
πL

d−1

[
1 +

Nπ − 1

2πF 2
πL

d−2

(
d− 1

d− 2
+ . . .

)
+ · · ·

]
.

This assumes the existence of Nambu-Goldstone bosons.

▶ In two dimensions we conjecture that

Θeff ≃ F 2
πL → MR

π ≃ Nπ

2F 2
πL

.

For the moment we consider Nπ = Nf − 1.

[11] P. Hasenfratz and F. Niedermayer, Z. Phys. B 92 (1993).
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Simulations

▶ We perform simulations in the δ-regime to determine Fπ by measuring MR
π

for several space extensions L, with 104 configurations.

▶ For Nf = 2 we simulate Wilson fermions with the HMC algorithm. The
degenerate fermion mass is computed with the PCAC relation.

▶ For Nf ≥ 2 we simulate overlap-hypercube fermions [12,13] with quenched
re-weighted configurations.

[12] H. Neuberger, Phys. Lett. B 417 (1998).

[13] W. Bietenholz and I. Hip, Nucl. Phys. B 570 (2000).
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Wilson fermions results
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Overlap-hypercube fermions results
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Conclusions

▶ For Nf = 2 the result of Fπ is compatible with 1/
√
2π, for

simulations with Wilson fermions and with overlap fermions in
the δ-regime. This same value is found through alternative
ways: GMOR relation and W-V formula.

▶ The results suggest that Fπ is flavor independent if we insert
Nπ = (Nf − 1)/Nf .

▶ Considering the previous point, we find Fη = Fπ.

▶ We attract attention to Fπ in the Schwinger model, which has
been almost overlooked in the literature.
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