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Sign problems in lattice QCD

Tom McCauley/CMS/CERN

Path integral
(O()0(0))5 = Tr [e ¥ et O 0] = = [ D[y, U] e~ 0(5)0(0)

The average phase

(o) = LDW UL v
[ DL, e~
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Complex control variates

The idea is very simple...

Subtract a function (fluctuation) from e=>!!
without changing physics
Z= /DX Y — f(x) With/Dx f(x)=0

so sign problem is reduced
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Variance reduction for signal-to-noise problem?!

Lattice scalar ¢* theory in Euclidean

r—a(r'))? m
S = Yy WP 4 57 1262(r) + 256%(r)]
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24 x 24 lattice, m* = 0.0\ =2.0

1T, Bhattacharya, S. Lawrence, and J. Yoo, arXiv:2307.14950 [hep-lat]
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Existence of control variates

Perfect control variates always exist!

Example:

e—S(H;e) = COS(G) + €, 9 € [O) 27T)

044 AN ’

What is the perfect control variates?

More generally, for any e~°
Dx e=5() L
f — a—S(x) _ f :
(X) e fDX 1 0

(Perfect control variates are not unique)
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Notes on control variates

Other strength of control variates
@ Include all contour deformation methods
@ No Jacobian

@ Can be applied to discrete field space

How do we find good control variates?

1. Analytical (perturbative) approaches

e S. Lawrence, arXiv:2009.10901[hep-lat]

e S. Lawrence and YY, arXiv:2212.14606 [hep-lat]
2. Numerical approaches

@ Start with ansatz and optimize

@ Machine learning

Demonstration: Classical Ising model, Thirring model in 1 + 1-d
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Demonstration: Classical Ising model
Classical Ising model: S(5) = —J 32 sy sisi — h>;si

Goal: Compute Z = 3", e~ at purely imaginary magnetic field

Measure
PR e

— Zs exp (J Z(i,j) S,‘Sj)

By replacing
ehdisi y eh s —cv
and optimize CV to minimize Var (ehzf S CV)
Constructing CV  (V;f(5) = f(si) — f(—si))
o V; e—5(h=0) o V; ( Sjefs(h:()))

o V; e_s(h)

o V; S,'Sje_s(h:())
o V; (S(h =0) e_s(h)>

(Important!)
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Classical Ising model (preliminary)
At purely imaginary h, J = 0.2, 8 x 8 lattice:

1.0

0.8

0.6

Z(h=0)

0.4
0.2

0.0 7
0.04

0.02 1

0.00

Error

—0.02

—0.04 T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Magnetic field strength (imaginary)

@ Raw: 2k samples for Z
@ VR: 2k samples to optimize, 2k samples for Z
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Numerical optimization of complex control variates

Prepare a family of functions f.,(x) that integate out to zero by
fv(x) =V -V(x) - [DxV-V(x)=0
represent v via neural network

and minimize

The gradient of (o) is sign-free

L
[ Dx (8, Re S,)|e5| Q

8v(_|0g<0—>) = ID¢‘3_SV|
S, = —log (e7*™ — £,(x))
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Measurement of observables

Idea 1. No subtraction in the numerator

[Dx e S0 [P () ) 800

S —f(x
(0) (x)

~ [DxeSK) [ Dx e=5() — f(x)
(Phase fluctuation moved from denominator to numerator.)

Idea 2. Subtract V - (OV) anyway

(0) = [Dx eSO -V - (OV)
[ Dx e 5 —V.v

B f’DX (efs(x) -V \7) (O+ e—5‘7(+mV\7)
B [Dx e 5 -V . ¥

Hoping that the “extra term” won’t cause signal-noise problem.

This seems to work for the density operator.... (why?)
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Thirring model in 1 4 1-dimension
S=3 é (1 —cosA,(x)) — logdet K, A, € [0,27)

with the Dirac matrix (79 = (—1)%0 and 7, = (—1)%)

1 ] v v —i v —0Ov
K[A]xy = maxy + 2 Zyzo,l 771/eIA O)+ud ’05x+1/,y — e Au(y)=0u0 y+uv,x
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@ 4 x 4 lattice, m=0.05,g = 1.0 - mg = 0.33(1), mg = 0.35(2)

@ MLP with 2 inner layers
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Larger networks give better vector fields
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@ 6 x 6 lattice
e m=0.05g=10,u=0.5
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Future

@ Better ansatz for control variates
@ Compare with contour deformation methods

@ Scale-up model size and complexity

Thank you!
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