Chiral Transition via Strong Coupling expansion

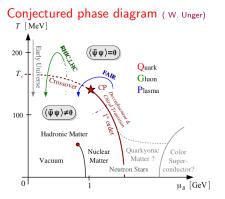
Pratitee Pattanaik with Wolfgang Unger & Jangho Kim

Bielefeld University

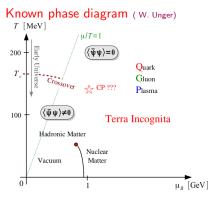
3 From tensor network representation to vertex model

5 Conclusion and Outlook

Motivation



- Crossover transition: At low µ_B and high T
- CEP followed by 1st order phase transition: As µ_B increases
- Nuclear phase transition: At low T



- LQCD: PD in $\mu_B/T < 1$ region
- Experiments and other theories: nuclear phase transition
- Unknown: location of CEP, existence of 1st order phase transition

- Sign problem: severe in LQCD, methods circumventing it is limited to $\mu_B/T < 1$ (Forcrand 2010)
- Alternative approach: study LQCD using strong coupling expansion
 - \blacksquare change order of integration \rightarrow dual variable formulation
 - strong coupling limit ($\beta \rightarrow 0$): well established (Rossi and Wolff 1984), full $\mu_B T$ phase diagram determined
 - leading $\mathcal{O}(\beta)$: up to $\beta \leq 1$, sign problem still mild enough, recently used to determine the nuclear liquid-gas transition (Kim, P, and Unger 2023)
 - **\mathcal{O}(\beta^n)**: dual formulation results in **tensor network** (promising approach) (Gagliardi and Unger 2020)
- In this talk, map dual formulation of LQCD to a vertex model:
 - suitable for Monte Carlo (in contrast to tensor-network methods)
 - \blacksquare aim: check the validity range in β by comparing different orders in β
- Goal: study the β dependence of the chiral critical end point

Strong Coupling expansion

Partition function of LQCD:

$$Z = \int_{G} DU_{n,\mu} d\bar{\chi}(n) d\chi(n) \exp\left(-S_{F}[\bar{\chi},\chi,U]\right) \exp\left(-S_{G}[U]\right)$$

here S_F is the staggered fermionic action:

$$S_F[\bar{\chi},\chi,U] = \sum_n \left(-\sum_\mu \eta_\mu(n) \left(\bar{\chi}_n U_{\hat{\mu}}(n) \chi_{n+\hat{\mu}} - \bar{\chi}_{n+\hat{\mu}} U_{\hat{\mu}}^{\dagger}(n) \chi_n \right) + 2m_q \bar{\chi} \chi \right)$$

and S_G is the Wilson gauge action:

$$S_{G}[U] = -\frac{\beta}{2N_{c}} \sum_{P} \operatorname{Re}\left(\operatorname{tr}\left[U_{p}\right] + \operatorname{tr}\left[U_{p}^{\dagger}\right]\right)$$

At strong coupling, β is small, allowing for a Taylor expansion of S_G in β :

$$\exp\left(-S_G[U]\right) = \sum_{n_p, \bar{n_p}=0}^{\infty} \frac{1}{n_p!} \frac{1}{\bar{n_p}!} \left(\frac{\beta}{2N}\right)^{n_p + \bar{n}_p} \left(\sum_p \operatorname{tr} U_p\right)^{n_p} \left(\sum_P \operatorname{tr} U_p^{\dagger}\right)^{\bar{n}_p}$$

Dual degrees of freedom

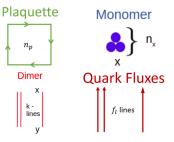
LATTICE

- Taylor expand in m_q with exponents n_x: monomer occupation number, are color singlet mesonic states living at a site
- - $\min(d_l, \bar{d}_l) = k_l$, dimers which are meson hoppings on a link
 - unpaired quark (f_l) or antiquark (\bar{f}_l) $f_l = d_l - \bar{d}_l$, oriented quark fluxes on a link

Partition function (in terms of dual variables):

$$Z\left(\beta, \hat{m}_{q}\right) = \sum_{\substack{\{n_{p}, \bar{n}_{p}\}\\\{d_{l}, \bar{d}_{l}, n_{x}\}}} \prod_{p} \frac{\tilde{\beta}^{n_{p} + \bar{n}_{p}}}{n_{p}! \bar{n}_{p}!} \prod_{l} \frac{1}{d_{l}! \bar{d}_{l}!} \prod_{x} \frac{(2\hat{m}_{q})_{x}^{n}}{n_{x}!} \mathcal{G}_{n_{p}, \bar{n}_{p}, d_{l}, \bar{d}_{l}, n_{x}}$$

 $\mathcal{G}:$ non-local Gauge+Grassmann integral over whole lattice



Computing \mathcal{G}

(Gagliardi and Unger 2020)

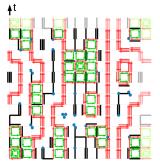
- Obtain the integral in terms of generalized Weingarten functions and integer partitions
- Get a different parametrization of integral using irreducible matrix elements of symmetric group
- Integral decouples into decoupling operators P^ρ (ρ=DOI):

Fixing DOI lets us contract color indices independently at each site

- Contraction of color indices depends on $n_p, \bar{n}_p, d_l, \bar{d}_l$
- Two types of color indices:
 - from expansion of hopping term (fermionic) -
 - determined by d_l, \bar{d}_l
 - contracted with Grassmann fields in fermionic matrices
 - from expansion of Wilson term (gluonic) -
 - determined by n_p, \bar{n}_p
 - contracted according to the plaquettes, contraction happens between different links sharing a common site

Constraints

(Gagliardi and Unger 2020)



Grassmann constraint: exactly N_c fermion and anti-fermion fields present at a site

$$n_x + \sum_{\pm\mu} \left(k_{x,\mu} + \frac{|f_{x,\mu}|}{2} \right) = N_c \qquad \sum_{\pm\mu} f_{x,\mu} = 0$$

• Gauge constraint: Sum of gauge flux and fermion flux on each link should be an integer multiple of N_c

$$f_{x,\mu} + \sum_{\nu > \mu} \left[\delta n_{\mu,\nu}(x) - \delta n_{\mu,\nu}(x-\nu) \right] = N_c \mathbb{Z}$$

Pratitee Pattanaik

Nuclear Transition

(Gagliardi and Unger 2020)

▶ The integrations and the contraction of the color indices results in a tensor:

$$T_n^{\rho} = \operatorname{Tr}[\prod_{\pm \mu} P^{\rho_{\mu}^n}] \in R$$

The partition function depends on local variables:

$$\mathcal{Z}\left(\beta,\mu_{q},\hat{m}_{q}\right) = \sum_{\substack{\{n_{p},\bar{n}_{p}\}\\\{k_{\ell},f_{\ell},m_{n}\}}} \sigma_{f} \sum_{\{\rho_{\mu}^{n}\}} \prod_{p} \frac{\left(\frac{\beta}{2N}\right)^{n_{p}+\bar{n}_{p}}}{n_{p}!\bar{n}_{p}!} \prod_{\ell=(n,\mu)} \frac{e^{\mu_{q}\delta_{\mu,0}f_{n,\mu}}}{k_{\ell}!\left(k_{\ell}+|f_{\ell}|\right)!} \prod_{n} \frac{\left(2\hat{m}_{q}\right)^{m_{n}}}{m_{n}!} T_{n}^{\rho_{-D}^{n}\dots\rho_{+D}^{n}}\left(\mathcal{D}_{n}\right)$$

Sign σ_f : includes the staggered phases and the global geometric sign due to quark fluxes

(Gagliardi and Unger 2020)

- From now on: restrict to U(3) up to O(β²), which has σ_f = 1
- Weight in front of tensor: subsued in to tensor to form vertices
- Calculation of vertices has been automatized:
 - Input order in β , gauge group (SU(N), U(N)), space-time dimension D + 1
 - Output list of vertices with corresponding weight
 - Vertices can be parsed back into dual degrees of freedom, example: U(1) gauge group with O(β²) in 1+1 dimension

Sample configuration with the vertices:

Ø	0	0	0
0018 →	→ 1800	000	000
34	17	48	48
1 +	+ ↓		
1 +	+ ↓		
34	17	48	48
0033 ←	← 3300	000	000
Θ	Θ	0	Θ
→ 1800	000	000	0018 →
17	48	48	34
+ J			↑ +
+ ↓			1 +
17	48	48	34
← 3300	000	000	0033 ←
0	0	0	0

Sampling: via Metropolis algorithm with vertex weight

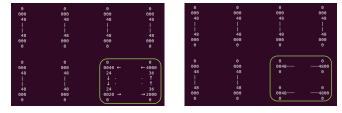
 $w(v) = (2m_q)^{N_m}(\gamma)^{0.5(N_{D_t}+N_{F_{t,+}}+N_{F_{t,-}})}(\tilde{\beta})^{0.25(N_p+\bar{N}_p)}(e^{\mu/\gamma^2})^{0.5(N_{F_{t,+}}-N_{F_{t,-}})}$

Acceptance probability:

$$\min\left(1, \frac{\prod_i w(v_i^{\mathrm{new}})}{\prod_i w(v_i^{\mathrm{old}})}\right)$$

Updates

- All possible configurations are attainable for U(3) by combining two types of updates:
 - Plaquette update choose random plaquette, update all vertices attached to it with new vertices compatible with surrounding vertices

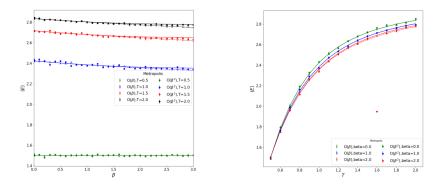


Line update - choose random line (spatial or temporal), update all vertices in the line with new vertices compatible with surrounding vertices

		1	
	80	416	(80)
0072 ←	← 7200	0080	
1464	404		80
1464	404		80
0020 →	→ 2000		888
			416
	80	1520	416
000	000	000	000
			80
1520			80
000	000	0080	
			80

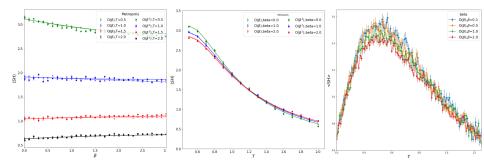
8			
0072 ←	← 7200	6680	
1464	404		416
· ·			
1464	484		416
0020 →	→ 2000	660	868
0	80	1520	80
8			
000	000	660	666
1520	416		416
1 I I I I I I I I I I I I I I I I I I I			
1 I I I I I I I I I I I I I I I I I I I			
1520			416
000	000	6680	
8	80	416	

- ► To verify the vertex model updates, we compare our results with exact enumeration results in 2 × 2 lattice
- Energy: $N_{D_t} + N_{F_{t,+}} + N_{F_{t,-}}$
- Exact enumeration: dashed lines $O(\beta)$, solid lines $O(\beta^2)$
- Results agree for all β and T for $O(\beta)$ and $O(\beta^2)$ corrections



$$\blacktriangleright C_v = \langle E^2 \rangle - \langle E \rangle^2$$

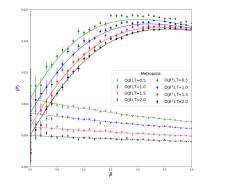
 peak at the transition temperature, let us determine the crossover temperature (higher statistics, larger volumes required)

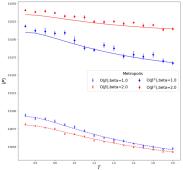


Average plaquette

• Average plaquette:
$$\langle P \rangle = \frac{n_p + \bar{n}_p}{2\beta V}$$

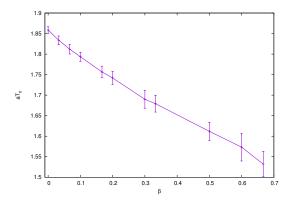
 $\blacktriangleright~O(\beta)$ and $O(\beta^2)$ have different results, but match at $\beta=0$





Dependence on β of aT_c

- Prelimnary result with $O(\beta)$ corrections, $O(\beta^2)$ results not yet satisfactory
- \blacktriangleright aT_c decreases with increasing $\beta:$ expected because the lattice spacing decreases with increasing β



- Implemented vertex model from tensor network representation, allows for metropolis sampling for U(N) gauge groups
- Agrees with results from exact enumeration
- Peak of susceptibility gives us the chiral transition temperature, higher statistics and larger volumes will let us find the transition temperature
- Extend the model to SU(N) gauge group
- Perform simulations with non-zero m_q and μ_B
- Include sampling via worm algorithm for faster sampling

THANK YOU

- Forcrand, Philippe de (2010). *Simulating QCD at finite density*. arXiv: 1005.0539 [hep-lat].
- Gagliardi, G. and W. Unger (Feb. 2020). "New dual representation for staggered lattice QCD". In: *Physical Review D* 101.3. DOI: 10.1103/physrevd.101.034509. URL: https://doi.org/10.1103%2Fphysrevd.101.034509.
 Kim, J., P. P., and W. Unger (May 2023). "Nuclear liquid-gas transition in the strong coupling regime of lattice QCD". In: *Physical Review D*

107.9. DOI: 10.1103/physrevd.107.094514. URL: https://doi.org/10.1103%2Fphysrevd.107.094514.

Rossi, Pietro and Ulli Wolff (1984). "Lattice QCD with fermions at strong coupling: A dimer system". In: Nuclear Physics B 248.1, pp. 105–122. ISSN: 0550-3213. DOI: https://doi.org/10.1016/0550-3213(84)90589-3. URL: https://www.sciencedirect.com/science/article/pii/ 0550321384905893.