The phase diagram at finite baryon and isospin densities at strong coupling

Wolfgang Unger, Bielefeld University Lattice 2023, Fermilab July 31, 2023

Outline

allows to apply Quantum Monte Carlo algorithms for finite μ_B, CP established [Klegrewe, U. PRD 102 (2020)]

Aim:

 $N_{\rm f}=2$: Determine the phase diagram for both finite baryon and isospin chemical potential

Content of the talk:

- The Hamiltonian approach to Lattice QCD via Dual Variables
- 2 Setup of the $N_{\rm f}=2$ Quantum Monte Carlo Simulation
- **3** Numerical results for finite μ_B , μ_I
 - Outlook on Quantum Computing

- Dual representation: color singlets from integrating out gauge fields U_µ(x) analytically
 - unrooted staggered fermions, standard Wilson gauge action
 - at β = 0: link states are mesons and baryons [Rossi, Wolff, NPB 248 (1984)]
 - at β > 0: color singlets may include gluon contributions [Gagliardi, U, PRD 101 (2020)]

2-dim. example of configuration in terms of dual variables

- Dual representation: color singlets from integrating out gauge fields U_µ(x) analytically
 - unrooted staggered fermions, standard Wilson gauge action
 - at β = 0: link states are mesons and baryons [Rossi, Wolff, NPB 248 (1984)]
 - at β > 0: color singlets may include gluon contributions [Gagliardi, U, PRD 101 (2020)]
- ► Sign problem in regime β = ⁶/_{g²} ≤ 1 mild enough to study full phase diagram:
 - \blacksquare baryons are heavy: $\Delta f\simeq 10^{-5}$
 - in continuous time limit $N_t \to \infty$: baryons become static
 - \Rightarrow finite density sign problem absent!

Quantum Hamiltonian is derived from dual representation via continuous time limit!

2-dim. example of configuration in terms of dual variables

Euclidean Continuous Time Limit

Continuous time (CT) methods

- make time direction continuous: $t \in [0, \beta]$
- Sample Z(β) = Tr[e^{βĤ}] in terms of decay probabilities [Beard & Wiese, PRL 77 (1996) 5132]

Euclidean Continuous Time Limit

Continuous time (CT) methods

• make time direction continuous: $t \in [0, \beta]$

sample Z(β) = Tr[e^{βĤ}] in terms of decay probabilities
 [Beard & Wiese, PRL 77 (1996) 5132]

Many applications:

▶ in condensed matter (SSE, Worm) [Gull et al (2010)]

fermion bags approach [Huffman & Chandrasekharan (2020)]

For Strong Coupling LQCD:

- Introduce bare anisotropy γ such that $\xi = \frac{a_s}{a_t} \neq 1$:
- Non-perturbative result: $\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1+\lambda\gamma^4}$, $\kappa = 0.781(1)$ [de Forcrand, Vairinhos, U., PRD 97 (2018)]
- Define the continuous Euclidean time limit (CT-limit):

$$N_t \to \infty, \quad \xi, \gamma \to \infty, \quad aT = \frac{\xi(\gamma)}{N_t} \simeq \kappa \mathcal{T}(\gamma, Nt), \quad \mathcal{T} = \frac{\gamma^2}{N_t} \quad \text{fixed}$$

Correspondence between discrete and continuous time:

- alternating dimer chains (top) and meson occupation numbers m (bottom):
- multiple spatial dimers become resolved in single spatial dimers, oriented consistently due to even-odd ordering

• conservation law: for mesons connecting $\langle x, y \rangle$

$$\mathfrak{m}_x \mapsto \mathfrak{m}_x \pm 1 \quad \Leftrightarrow \quad \mathfrak{m}_y \mapsto \mathfrak{m}_y \mp 1$$

Hamiltonian Formulation: Creation and Annihilation Operators

Derive Hamiltonian via diagrammatic expansion of $Z_{CT} = \lim_{\gamma, N_t \to \infty} Z_{N_t}(\gamma)$

• express the partition function as series in inverse temperature $\frac{1}{T} = \frac{N_t}{\gamma^2}$:

$$Z_{\rm CT}(\mathcal{T},\mu_{\mathcal{B}}) = {\rm Tr}_{\mathfrak{h}} \left[e^{(\hat{\mathcal{H}} + \hat{\mathcal{N}}\mu_{\mathcal{B}})/\mathcal{T}} \right], \ \hat{\mathcal{H}} = \frac{1}{2} \sum_{\langle \vec{x}, \vec{y} \rangle} \left(\hat{J}_{\vec{x}}^+ \hat{J}_{\vec{x}}^- + \hat{J}_{\vec{x}}^- \hat{J}_{\vec{x}}^+ \right), \ \hat{\mathcal{N}} = \sum_{\vec{x}} \hat{\omega}_x$$

▶ the creation \hat{J}^+ and annihilation operators $\hat{J}^- = (\hat{J}^+)^T$ contain the matrix elements $\langle \mathfrak{m}_1 | 1 | \mathfrak{m}_2 \rangle$ with $\hat{v}_{\mathsf{L}} = \langle 0 | 1 | 2 \rangle = 1$, $\hat{v}_{\mathsf{T}} = \langle 1 | 1 | 1 \rangle = \frac{\sqrt{3}}{4}$:

$$\hat{J}^{+} = \begin{pmatrix} 0 & 0 & 0 & 0 & | & & \\ \hat{v}_{\mathsf{L}} & 0 & 0 & 0 & | & & \\ 0 & \hat{v}_{\mathsf{T}} & 0 & 0 & | & & \\ 0 & 0 & \hat{v}_{\mathsf{L}} & 0 & | & & \\ \hline & & & & 0 & 0 \\ \hline & & & & & 0 & 0 \\ \hline & & & & & 0 & 0 \\ \hline & & & & & 0 & -1 \\ \end{pmatrix}, \quad \hat{\omega} = \begin{pmatrix} 0 & 0 & 0 & 0 & | & & \\ 0 & 0 & 0 & 0 & | & & \\ 0 & 0 & 0 & 0 & | & \\ \hline & & & & & 1 & 0 \\ & & & & & 0 & -1 \\ \end{pmatrix}$$

▶ local Hilbert space per site: $|\mathfrak{h}\rangle \in \mathbb{H}_{\mathfrak{h}} = [0, \pi, 2\pi, 3\pi; B^+, B^-]$

- block-diagonal structure due to commutation relation $[\hat{\mathcal{H}},\hat{\mathcal{N}}]=0$

The Hamiltonian has ${N_{\rm f}}^2$ contributions, one for each pseudoscalar meson:

- due to continuous time limit, also for N_f > 1, only single mesons are interchanged between nearest
- partition function:

$$Z_{\rm CT}(\mathcal{T},\mu_{\mathcal{B}},\mu_{\mathcal{I}}) = {\rm Tr}_{\mathfrak{h}} \left[e^{(\hat{\mathcal{H}}+\hat{\mathcal{N}}_{B}\mu_{\mathcal{B}}+\hat{\mathcal{N}}_{I}\mu_{\mathcal{I}})/\mathcal{T}} \right] \qquad \mathfrak{h} \in \mathbb{H}_{\mathfrak{h}}$$
$$\hat{\mathcal{H}}_{I} = \frac{1}{2} \sum_{\langle \vec{x}, \vec{y} \rangle} \sum_{Q_{i} \in \{\pi^{+},\pi^{-},\pi_{U},\pi_{D}\}} \left(\hat{J}_{Q_{i},\vec{x}}^{+} \hat{J}_{Q_{i},\vec{y}}^{-} + \hat{J}_{Q_{i},\vec{x}}^{-} \hat{J}_{Q_{i},\vec{y}}^{+} \right)$$

- ▶ for the transition $\mathfrak{h}_1 \mapsto \mathfrak{h}_2$, the matrix elements $\langle \mathfrak{h}_1 | Q_i | \mathfrak{h}_2 \rangle$ of $\hat{J}_{Q_i}^{\pm}$ are determined from Grassmann integration and diagonalization
- only those matrix elements are non-zero which are consistent with current conservation of all Q_i, and turn out to be positive!

Hadronic States for $N_{\rm f}=2$

Local Hilbert space $\mathbb{H}_{\mathfrak{h}}$:

- multiplicities in basis $B,\,I$ and meson occupation number m

B	Ι	$\mathfrak{m} = 0$	$\mathfrak{m} = 1$	$\mathfrak{m} = 2$	$\mathfrak{m} = 3$	$\mathfrak{m} = 4$	$\mathfrak{m} = 5$	$\mathfrak{m} = 6$	Σ
-2	0	1							1
-2	Σ	1	0	0	0	0	0	0	1
-1	$-\frac{3}{2}$	1	1	1	1				4
-1	$-\frac{1}{2}$	1	2	2	1				6
-1	$+\frac{1}{2}$	1	2	2	1				6
-1	$+\frac{3}{2}$	1	1	1	1				4
-1	$\bar{\Sigma}$	4	6	6	4	0	0	0	20
0	-3				1				1
0	-2			1	2	1			4
0	-1		1	2	4	2	1		10
0	0	1	2	4	6	4	2	1	20
0	-1		1	2	4	2	1		10
0	-2			1	2	1			4
0	-3				1				1
0	Σ	1	4	10	20	10	4	1	50
1	$-\frac{3}{2}$	1	1	1	1				4
1	$-\frac{3}{2}$	1	2	2	1				6
1	$+\frac{3}{2}$	1	2	2	1				6
1	$+\frac{3}{2}$	1	1	1	1				4
1	$\overline{\Sigma}$	4	6	6	4	0	0	0	20
2	0	1							1
2	Σ	1	0	0	0	0	0	0	1
Σ		11	16	22	28	10	4	1	92

Transitions between states: B = 0

▶ states only distinguishable on quark level, eg. $\pi_+\pi_- = \pi_U\pi_D \equiv \pi^2$

quark content not sufficient, some states have twofold degeneracy:

Transitions between states: B = -1, -2

Transitions between states: B = 1, 2

Expectations from Mean Field Theory at Strong Coupling ($N_{ m f}=2$)

- mean field results for staggered fermions in 1/d expansion
- at non-zero isospin density: two CEPs (first σ_u vanishes, then σ_d)
- pion condensation vanishes again at larger isospin density (Pauli saturation)

[Nishida, PRD 69 (2004)]

Continuum extrapolated N_f = 2 + 1 QCD phase diagram at non-zero μ_I, but μ_B = 0 shows pion condensation [Brandt et al., Confinement 2018 (260)]

Analytic results in the Static Limit: Finite Quark Mass

- \blacktriangleright for non-zero isospin chemical potential: baryon density has two transitions at low T
- as $n_B = 2$, the isospin density vanishes (Pauli saturation)
- similar finding as in Mean Field for strong coupling limit

As for $N_{\rm f} = 1$, a continuous Euclidean time Worm algorithm operates on the meson occupation numbers:

- move update: choose Worm head/tail for specific meson charge $Q = \bar{q}_1 q_2$, only accept if Q can be raised/lowered
- 2 shift update: move in temporal direction until pion is emitted/absorbed according to $J_{Q,x}^{\dagger}J_{Q,y}$, proportional to exponential decay $p(\Delta t) = e^{-\lambda\Delta t}$ with decay constant $\lambda = d_Q(\vec{x,t})/4T$, which is **time-dependent** for $N_{\rm f} = 2$
- 윌 repeat [2] until Worm closes

New physics expected:

- single baryons can now coexist with pions, resulting in pion exchange between nucleons
- pion condensation competes with nuclear phase

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

• $\mu_B - \mu_I$ -plane for various temperatures T:

Wolfgang Unger

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

• $\mu_B - \mu_I$ -plane for various temperatures T:

Wolfgang Unger

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- ▶ baryon density: nuclear transition at $\langle n_B \rangle \simeq 1$ for T < 1.0, Pauli saturation at $\langle n_B \rangle = 2$
- isospin density: $\langle n_I \rangle$ only non-zero in the nuclear transition region, vanishing in the chirally broken and Pauli saturated phase
- interaction energy: pion exchange, measure for chiral symmetry breaking

- lowest temperature so far: T = 0.5, which has a first order nuclear transition
- \blacktriangleright no plateau found at $\langle n_B \rangle = 1,$ but two regimes are visibile
- Iower temperatures might be required (but computationally expensive)

Phase Diagram

• nuclear transition μ_B^c depends strongly on μ_I , weakly on T

 \blacktriangleright location of CEP not yet established: all data based on 8^3 volume

finite size scaling using isospin and baryon susceptibilities on the way

Map the quantum Hamiltonian on quantum circuits:

[with M. Fromm, C. Winterowd, O. Philipsen, in preparation]

- degrees of freedom already discrete, can be easily qubitzed
- ▶ Gauss law is not an issue, can be readily applied to 3 spatial dimensions
- ▶ for $N_{\rm f} = 1$, U(3): 2 by 2 qubit coupling, four families of set of commuting Pauli strings, for which quantum circuits have been derived
- \blacktriangleright for ${\rm SU}(3),$ an additional qubit is required to capture the static baryons
- ▶ for $N_{\rm f} = 2$, we requires a 6 by 6 qubit coupling for U(3), not yet fully analyzed for SU(3)

For strong coupling lattice QCD on a quantum annealer:

 $\rightarrow~$ talk by Jangho Kim, Wed. 9:00, Quantum Computing Session

Conclusions

Results:

- Hamiltonian formulation also completely sign problem-free, for N_f = 2 (not the case for discrete N_t!)
- ▶ matrix elements for the creation and annihilation operators \hat{J}^{\pm} have now been determined for $N_{\rm f} = 2, 3$
- via continuous time worm algorithm:
 - determined the phase diagram in the T, μ_B, μ_I -space
 - finding similar to expectation from meanfield
- first steps towards Quantum Computing

Further Goals:

- measure nuclear potential to study pion exchange
- ▶ include gauge corrections also for $N_{\rm f} = 2$
- For gauge corrections for $N_{\rm f} = 1$:
 - ightarrow talk by Pratitee Pattanaik, Wed. 9:20, Finite Temperature Session