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Introduction and Motivation

There exists 2.2σ tension between exclusive and inclusive determination of |Vub|.[PDG,
Review of CKM Matrix elements]

As s quark is heavier than light u/d quarks we can expect that the statistical
uncertainty should be smaller than B → πℓν determination.[Parisi (‘84), Lepage (‘89)]

b u

l−

νl

ū/s̄ ū/s̄

W−

LHCb observed Bs
0 → K−µ+νµ decay. [R. Aaij et al., PRL 126, 081804 (2021)]

In this talk we report our on going study of form factors with domain-wall heavy quark.
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Form factor extraction w/ zero-momentum

The two-point and three-point functions used are -

CK→Bs
3,µ (t, T ) =

∑
x⃗,y⃗

⟨OBs (x⃗, T )V µ
bl (y⃗, t)OK (⃗0, 0)†⟩ exp [−i(q⃗.y⃗)]

CBs→K
3,µ (t, T ) =

∑
x⃗,y⃗

⟨OK(x⃗, T )V µ
lb (y⃗, t)OBs (⃗0, 0)

†⟩

CK→K
3,µ (t, T ) =

∑
x⃗,y⃗

⟨OK(x⃗, T )V µ
ll (y⃗, t)OK (⃗0, 0)†⟩

CBs→Bs
3,µ (t, T ) =

∑
x⃗,y⃗

⟨OBs (x⃗, T )V µ
bb(y⃗, t)OBs (⃗0, 0)

†⟩

CK
2 (t) =

∑
x⃗

⟨OK(x⃗, t)OK (⃗0, 0)†⟩ exp [−i(p⃗K .x⃗)]

CBs
2 (t) =

∑
x⃗

⟨OBs (x⃗, t)OBs (⃗0, 0)
†⟩

With V µ
bl (x) = b̄(x)γµl(x), V µ

lb (x) = l̄(x)γµb(x), V µ
ll (x) = l̄(x)γµl(x) and

V µ
bb(x) = b̄(x)γµb(x).

CBs→K
3,µ (t, T ), CK→K

3,µ (t, T ), CBs→Bs
3,µ (t, T ) are calculated with zero momentum

insertion, as they are needed for zero momentum analysis only.

Bs meson kept at rest.
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Two-point functions are always smeared at the source but are local or smeared at the
sink while the three-point functions are always smeared at both source and sink. Needed
to cancel overlap factors in the ratio.

We express the three-point functions as

CK→Bs
3,4 (t, T ) =

∑
n,m

ABs
n AK∗

m DK→Bs
4,nm exp [−EBs

n (T − t)] exp [−EK
m t]

Here ABs
n =

⟨0|OBs (⃗0,0)|B
n
s ⟩√

2EBs
n

and DK→Bs
4,nm =

⟨Bn
s |V 4

bl (⃗0,0)|K
m⟩

2
√

EBs
n EK

m

.

We studied the ground state saturation

R3p2p =
CK→Bs

3,4 (t, T )

CK
2 (t)CBs

2 (T − t)
→

DK→Bs
4,00

AK
0 A

B∗
s

0

Double Ratio :
CK→Bs

3,4 (t,T )CBs→K
3,4 (t,T )

CK→K
3,4 (t,T )CBs→Bs

3,4 (t,T )
→ DK→Bs

4,00 DBs→K
4,00

DK→K
4,00 DBs→Bs

4,00

⇒ No need for current renormalization. [Hashimoto et al., PRD 61, 014502 (1999)]
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Comparison of R3p2p and Double Ratio for K → Bs data
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The ground state contribution of R3p2p and Double Ration are related as

R3p2pA
K
0 ABs

0

√
ZVbl

=
√
Double Ratio

Here, Vµ
bl = ZVbl

V µ
bl ; ZVbl

=
√

ZVll
ZVbb

Comparison of numbers obtained by these two methods on 100, 323 × 64× 12
configurations with β = 4.17, a ∼ 0.08fm, ms=0.04, ml=0.019. For the heavy quark
mass(mQ) we have three-points mc(0.44037), 1.25×mc(0.55046) and
1.252 ×mc(0.68808).

mQ 0.44037 0.55046 0.68808

R3p2pAK
0 ABs

0

√
ZVbl

1.154(12) 1.177(12) 1.209(13)√
Double Ratio 1.1546(10) 1.1802(16) 1.2061(25)

In the R3p2p ratio method the largest errors come from the measurement of ZVbl
.
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Comparison of π → B and K → Bs data. The data is generated at four source positions
and then averaged over for both the cases.
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The error bars are much smaller for K → Bs data.
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Fitting

Here we show the effective masses of K and Bs. The ground state contribution
dominates around t/a ≥ 10.
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The covariance matrix becomes singular for larger fit range. Apart from few eigen-values
the statistical fluctuations of the eigen-values are of the same order as the eigen-values
themselves.

We report the result of uncorrelated fit in this talk.
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We included only the first excited state in our analysis.

Fit formula for double ratio –

CK→Bs
3,4 (t, T )CBs→K

3,4 (t, T )

CK→K
3,4 (t, T )CBs→Bs

3,4 (t, T )
= C00

(
1 +A′

[
exp [−∆EKt] + exp [−∆EK(T − t)]

]
+B′

[
exp [−∆EBs t] + exp [−∆EBs (T − t)]

])
Ground state contribution

C00 =

(
D4,00

)2
DK

4,00D
Bs
4,00

=
⟨Bs|(b̄γ4u)|K⟩ ⟨K|(ūγ4b)|Bs⟩
⟨K|(ūγ4u)|K⟩ ⟨Bs|(b̄γ4b)|Bs⟩

=
(MBs +MK)2

(
f0(q2)

)2
4MKMBs

We performed a simultaneous fit of K, Bs two-point functions and all the double ratios
(T = 12, 16, 20, 24, 28) together.

We used jackknife method for error calculation of the fit curve. We did binning of raw
correlators with bin size = 4.
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Fit results

Protick Mohanta 10 / 20



0 5 10 15 20 25 30

1.1

1.2

1.3

1.4

t/a

D
o
u
b
le

R
a
ti
o

C00 fit band

T = 28

T = 24

T = 20

T = 16

T = 12

Protick Mohanta 11 / 20



Form factor extraction for non-zero momenta

In order to extract form factors at non zero momentum we consider the following ratio –

R4(p⃗K) =
CK→Bs

3,4 (t, T, p⃗Bs = 0⃗, p⃗K)

CK→Bs
3,4 (t, T, p⃗Bs = 0⃗, p⃗K = 0⃗)

×
CK

2 (t, p⃗K = 0⃗)

CK
2 (t, p⃗K)

f∥(EK) =
⟨K|V 0|Bs⟩√

2MBs

We considered all possible combination (pxK , pyK , pzK) with piK = −1, 0,+1

|p⃗K |2 = 1: (+1, 0, 0); (−1, 0, 0); (0,+1, 0); (0,−1, 0); (0, 0,+1); (0, 0,−1)

In order to extract f⊥ we consider the following ratio

Ri(p⃗K) =
CK→Bs

3,i (t, T, p⃗Bs = 0⃗, p⃗K)

CK→Bs
3,4 (t, T, p⃗Bs = 0⃗, p⃗K)

f⊥(EK) =
1

piK

⟨K|V i|Bs⟩√
2MBs
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Fit formulae

R4(p⃗K) =
CK→Bs

3,4 (t, T, p⃗Bs = 0⃗, p⃗K)

CK→Bs
3,4 (t, T, p⃗Bs = 0⃗, p⃗K = 0⃗)

×
CK

2 (t, p⃗K = 0⃗)

CK
2 (t, p⃗K)

= C44

(
1 +A exp [−∆EBs (p⃗Bs = 0⃗)(T − t)] +B exp [−∆EK(p⃗K = 0⃗)t]

+F exp [−∆EK(p⃗K)t]
)

Ri(p⃗K) =
CK→Bs

3,i (t, T, p⃗Bs = 0⃗, p⃗K)

CK→Bs
3,4 (t, T, p⃗Bs = 0⃗, p⃗K)

= C4i

(
1 +G exp [−∆EBs (p⃗Bs = 0⃗)(T − t)] +H exp [−∆EK(p⃗K)t]

)
f∥(EK) = C44

√
2MKC00; f⊥(EK) =

C4iC44
√
2MKC00

piK

We performed combined fit of R4(p⃗K), Ri(p⃗K), CK
2 (t, p⃗K = 0⃗), CK

2 (t, p⃗K) and CBs
2 (t)
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Fit results for |p⃗|2 = 1, R4(p⃗K)
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Fit results for |p⃗|2 = 1, Ri(p⃗K)
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Form factors

For comparison with B → πℓν case [Colquhoun et al., PRD 106, 054502 (2022)] we
convert f∥ and f⊥ to HQET motivated definition of form factors f1 and f2:

f1(EK) + f2(EK) =
f∥(EK)

√
2

; f2(EK) =
EK f⊥(EK)

√
2

(a) mQ=mc (b) mQ=1.252mc

Fit functions are assumed to be polynomial of EK only.

Statistical uncertainty is ∼1%. better than B → πℓν by a factor of ≲ 3.
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Summary and Outlook

We report JLQCD’s study of Bs → Kℓν form factors with Möbius domain-wall heavy
quarks
→ mb < 0.7a−1 to control discretization errors.
→ through correlator ratios ⇒ no need for current renormalization.
→ preliminary results at a−1 ∼ 2.5 GeV, Mπ ∼ 500 MeV

Statistical accuracy ∼ 1%
→ averaged over 4 source-time slices
→ better than B → πℓν (Lepage’s arguments).

Ground state saturation – studied by simulating 5 source-sink separations.

On-going analysis at a−1 ≲ 4.5 GeV and Mπ ≳ 230 MeV.
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