$B_s \to K \ell \nu$ form factors from lattice QCD with domain-wall heavy quarks

Protick Mohanta

in collaboration with

Takashi Kaneko and Shoji Hashimoto (JLQCD Collaboration)

Institute of Particle and Nuclear Studies (IPNS), KEK

Lattice 2023, July 31st, 2023 Fermilab

Introduction and Motivation

- There exists 2.2σ tension between exclusive and inclusive determination of $|V_{ub}|$.[PDG, Review of CKM Matrix elements]
- As s quark is heavier than light u/d quarks we can expect that the statistical uncertainty should be smaller than $B \to \pi \ell \nu$ determination.[Parisi ('84), Lepage ('89)]

- LHCb observed $B_s{}^0 \to K^- \mu^+ \nu_\mu$ decay. [R. Aaij *et al.*, PRL 126, 081804 (2021)]
- In this talk we report our on going study of form factors with domain-wall heavy quark.

Form factor extraction w/ zero-momentum

• The two-point and three-point functions used are -

$$\begin{split} C_{3,\mu}^{K \to B_s}(t,T) &= \sum_{\vec{x},\vec{y}} \langle \mathcal{O}_{B_s}(\vec{x},T) V_{bl}^{\mu}(\vec{y},t) \mathcal{O}_K(\vec{0},0)^{\dagger} \rangle \exp\left[-i(\vec{q}.\vec{y})\right] \\ C_{3,\mu}^{B_s \to K}(t,T) &= \sum_{\vec{x},\vec{y}} \langle \mathcal{O}_K(\vec{x},T) V_{lb}^{\mu}(\vec{y},t) \mathcal{O}_{B_s}(\vec{0},0)^{\dagger} \rangle \\ C_{3,\mu}^{K \to K}(t,T) &= \sum_{\vec{x},\vec{y}} \langle \mathcal{O}_K(\vec{x},T) V_{ll}^{\mu}(\vec{y},t) \mathcal{O}_K(\vec{0},0)^{\dagger} \rangle \\ C_{3,\mu}^{B_s \to B_s}(t,T) &= \sum_{\vec{x},\vec{y}} \langle \mathcal{O}_{B_s}(\vec{x},T) V_{bb}^{\mu}(\vec{y},t) \mathcal{O}_{B_s}(\vec{0},0)^{\dagger} \rangle \\ C_2^K(t) &= \sum_{\vec{x}} \langle \mathcal{O}_K(\vec{x},t) \mathcal{O}_K(\vec{0},0)^{\dagger} \rangle \exp\left[-i(\vec{p}_K.\vec{x})\right] \\ C_2^{B_s}(t) &= \sum_{\vec{x}} \langle \mathcal{O}_{B_s}(\vec{x},t) \mathcal{O}_{B_s}(\vec{0},0)^{\dagger} \rangle \end{split}$$

With $V_{bl}^{\mu}(x) = \bar{b}(x)\gamma^{\mu}l(x), V_{lb}^{\mu}(x) = \bar{l}(x)\gamma^{\mu}b(x), V_{ll}^{\mu}(x) = \bar{l}(x)\gamma^{\mu}l(x)$ and $V_{bb}^{\mu}(x) = \bar{b}(x)\gamma^{\mu}b(x).$

- $C^{B_s \to K}_{3,\mu}(t,T), C^{K \to K}_{3,\mu}(t,T), C^{B_s \to B_s}_{3,\mu}(t,T)$ are calculated with zero momentum insertion, as they are needed for zero momentum analysis only.
- B_s meson kept at rest.

- Two-point functions are always smeared at the source but are local or smeared at the sink while the three-point functions are always smeared at both source and sink. Needed to cancel overlap factors in the ratio.
- We express the three-point functions as

$$C_{3,4}^{K \to B_s}(t,T) = \sum_{n,m} A_n^{B_s} A_m^{K^*} D_{4,nm}^{K \to B_s} \exp\left[-E_n^{B_s}(T-t)\right] \exp\left[-E_m^K t\right]$$

Here
$$A_n^{B_s} = \frac{\langle 0|\mathcal{O}_{B_s}(\vec{0},0)|B_s^n \rangle}{\sqrt{2E_n^{B_s}}}$$
 and $D_{4,nm}^{K \to B_s} = \frac{\langle B_s^n|V_{bl}^4(\vec{0},0)|K^m \rangle}{2\sqrt{E_n^{B_s}E_m^K}}$

• We studied the ground state saturation

$$R_{3p2p} = \frac{C_{3,4}^{K \to B_s}(t,T)}{C_2^K(t) C_2^{B_s}(T-t)} \to \frac{D_{4,00}^{K \to B_s}}{A_0^K A_0^{B_s^*}}$$

• Double Ratio : $\frac{C_{3,4}^{K \to B_s}(t,T) C_{3,4}^{B_s \to K}(t,T)}{C_{3,4}^{K \to K}(t,T) C_{3,4}^{B_s \to B_s}(t,T)} \to \frac{D_{4,00}^{K \to B_s} D_{4,00}^{B_s \to K}}{D_{4,00}^{K \to K} D_{4,00}^{B_s \to B_s}}$
 \Rightarrow No need for current renormalization. [Hashimoto *et al.*, PRD 61, 014502 (1999)]

Comparison of R_{3p2p} and Double Ratio for $K \to B_s$ data

• The ground state contribution of R_{3p2p} and Double Ration are related as

$$R_{3p2p}A_0^K A_0^{B_s} \sqrt{Z_{V_{bl}}} = \sqrt{\text{Double Ratio}}$$

Here, $\mathcal{V}_{bl}^{\mu} = Z_{V_{bl}} V_{bl}^{\mu}; \ Z_{V_{bl}} = \sqrt{Z_{V_{ll}} Z_{V_{bb}}}$

• Comparison of numbers obtained by these two methods on 100, $32^3 \times 64 \times 12$ configurations with $\beta = 4.17$, $a \sim 0.08$ fm, $m_s = 0.04$, $m_l = 0.019$. For the heavy quark mass (m_Q) we have three-points $m_c(0.44037)$, $1.25 \times m_c(0.55046)$ and $1.25^2 \times m_c(0.68808)$.

m_Q	0.44037	0.55046	0.68808
$R_{3p2p}A_0^K A_0^{B_s} \sqrt{Z_{V_{bl}}}$	1.154(12)	1.177(12)	1.209(13)
$\sqrt{\text{Double Ratio}}$	1.1546(10)	1.1802(16)	1.2061(25)

• In the R_{3p2p} ratio method the largest errors come from the measurement of $Z_{V_{bl}}$.

 Comparison of π → B and K → B_s data. The data is generated at four source positions and then averaged over for both the cases.

• The error bars are much smaller for $K \to B_s$ data.

Fitting

• Here we show the effective masses of K and B_s . The ground state contribution dominates around $t/a \ge 10$.

- The covariance matrix becomes singular for larger fit range. Apart from few eigen-values the statistical fluctuations of the eigen-values are of the same order as the eigen-values themselves.
- We report the result of uncorrelated fit in this talk.

- We included only the first excited state in our analysis.
- Fit formula for double ratio -

$$\begin{array}{ll} C^{K \to B_s}_{3,4}(t,T) \, C^{B_s \to K}_{3,4}(t,T) \\ C^{K \to K}_{3,4}(t,T) \, C^{B_s \to B_s}_{3,4}(t,T) \end{array} &= & C_{00} \left(1 + A' \Big[\exp\left[-\Delta E_K t \right] + \exp\left[-\Delta E_K (T-t) \right] \right] \\ &+ B' \Big[\exp\left[-\Delta E_{B_s} t \right] + \exp\left[-\Delta E_{B_s} (T-t) \right] \Big] \right) \end{array}$$

• Ground state contribution

$$C_{00} = \frac{\left(D_{4,00}\right)^2}{D_{4,00}^K D_{4,00}^{B_s}} = \frac{\langle B_s | (\bar{b}\gamma_4 u) | K \rangle \langle K | (\bar{u}\gamma_4 b) | B_s \rangle}{\langle K | (\bar{u}\gamma_4 u) | K \rangle \langle B_s | (\bar{b}\gamma_4 b) | B_s \rangle} = \frac{(M_{B_s} + M_K)^2 (f_0(q^2))^2}{4M_K M_{B_s}}$$

- We performed a simultaneous fit of K, B_s two-point functions and all the double ratios (T = 12, 16, 20, 24, 28) together.
- We used jackknife method for error calculation of the fit curve. We did binning of raw correlators with bin size = 4.

Fit results

Protick Mohanta

Form factor extraction for non-zero momenta

• In order to extract form factors at non zero momentum we consider the following ratio –

$$R_{4}(\vec{p}_{K}) = \frac{C_{3,4}^{K \to B_{s}}(t, T, \vec{p}_{B_{s}} = \vec{0}, \vec{p}_{K})}{C_{3,4}^{K \to B_{s}}(t, T, \vec{p}_{B_{s}} = \vec{0}, \vec{p}_{K} = \vec{0})} \times \frac{C_{2}^{K}(t, \vec{p}_{K} = \vec{0})}{C_{2}^{K}(t, \vec{p}_{K})}$$
$$f_{\parallel}(E_{K}) = \frac{\langle K | V^{0} | B_{s} \rangle}{\sqrt{2M_{B_{s}}}}$$

- We considered all possible combination (p_K^x, p_K^y, p_K^z) with $p_K^i = -1, 0, +1$
- $\bullet \ |\vec{p}_K|^2 = 1 \text{:} \quad (+1,0,0); (-1,0,0); (0,+1,0); (0,-1,0); (0,0,+1); (0,0,-1)$
- In order to extract f_{\perp} we consider the following ratio

$$R_{i}(\vec{p}_{K}) = \frac{C_{3,i}^{K \to B_{s}}(t, T, \vec{p}_{B_{s}} = \vec{0}, \vec{p}_{K})}{C_{3,4}^{K \to B_{s}}(t, T, \vec{p}_{B_{s}} = \vec{0}, \vec{p}_{K})}$$
$$f_{\perp}(E_{K}) = \frac{1}{p_{K}^{i}} \frac{\langle K | V^{i} | B_{s} \rangle}{\sqrt{2M_{B_{s}}}}$$

Fit formulae

$$\begin{split} R_4(\vec{p}_K) &= \frac{C_{3,4}^{K \to B_s}(t,T,\vec{p}_{B_s}=\vec{0},\vec{p}_K)}{C_{3,4}^{K \to B_s}(t,T,\vec{p}_{B_s}=\vec{0},\vec{p}_K=\vec{0})} \times \frac{C_2^K(t,\vec{p}_K=\vec{0})}{C_2^K(t,\vec{p}_K)} \\ &= C_{44} \left(1 + A \exp\left[-\Delta E_{B_s}(\vec{p}_{B_s}=\vec{0})(T-t)\right] + B \exp\left[-\Delta E_K(\vec{p}_K=\vec{0})t\right] \\ &+ F \exp\left[-\Delta E_K(\vec{p}_K)t\right] \right) \\ R_i(\vec{p}_K) &= \frac{C_{3,i}^{K \to B_s}(t,T,\vec{p}_{B_s}=\vec{0},\vec{p}_K)}{C_{3,4}^{K \to B_s}(t,T,\vec{p}_{B_s}=\vec{0},\vec{p}_K)} \\ &= C_{4i} \left(1 + G \exp\left[-\Delta E_{B_s}(\vec{p}_{B_s}=\vec{0})(T-t)\right] + H \exp\left[-\Delta E_K(\vec{p}_K)t\right] \right) \\ f_{\parallel}(E_K) &= C_{44} \sqrt{2M_K C_{00}}; \quad f_{\perp}(E_K) = \frac{C_{4i} C_{44} \sqrt{2M_K C_{00}}}{p_K^i} \end{split}$$

• We performed combined fit of $R_4(\vec{p}_K)$, $R_i(\vec{p}_K)$, $C_2^K(t, \vec{p}_K = \vec{0})$, $C_2^K(t, \vec{p}_K)$ and $C_2^{B_s}(t)$

Fit results for $|\vec{p}|^2 = 1, R_4(\vec{p}_K)$

Fit results for $|\vec{p}|^2 = 1, R_i(\vec{p}_K)$

Form factors

• For comparison with $B \to \pi \ell \nu$ case [Colquhoun *et al.*, PRD 106, 054502 (2022)] we convert f_{\parallel} and f_{\perp} to HQET motivated definition of form factors f_1 and f_2 :

$$f_1(E_K) + f_2(E_K) = \frac{f_{\parallel}(E_K)}{\sqrt{2}}; \quad f_2(E_K) = \frac{E_K f_{\perp}(E_K)}{\sqrt{2}}$$

• Fit functions are assumed to be polynomial of E_K only.

• Statistical uncertainty is ~1%. better than $B \to \pi \ell \nu$ by a factor of ≤ 3 .

Summary and Outlook

- We report JLQCD's study of $B_s \to K \ell \nu$ form factors with Möbius domain-wall heavy quarks
 - $\rightarrow m_b < 0.7a^{-1}$ to control discretization errors.
 - \rightarrow through correlator ratios \Rightarrow no need for current renormalization.
 - \rightarrow preliminary results at $a^{-1} \sim 2.5 \text{ GeV}, M_{\pi} \sim 500 \text{ MeV}$
- Statistical accuracy $\sim 1\%$
 - \rightarrow averaged over 4 source-time slices
 - \rightarrow better than $B \rightarrow \pi \ell \nu$ (Lepage's arguments).
- Ground state saturation studied by simulating 5 source-sink separations.
- On-going analysis at $a^{-1} \lesssim 4.5$ GeV and $M_{\pi} \gtrsim 230$ MeV.

THANK YOU