$B_{s} \rightarrow K \ell \nu$ form factors from lattice QCD with domain－wall heavy quarks

Protick Mohanta

in collaboration with
Takashi Kaneko and Shoji Hashimoto
（JLQCD Collaboration）

Institute of Particle and Nuclear Studies（IPNS），KEK

Lattice 2023，July 31st， 2023
Fermilab

素粒子原子核研究所率柆子原子核研究所

Introduction and Motivation

- There exists 2.2σ tension between exclusive and inclusive determination of $\left|V_{u b}\right| \cdot[\mathrm{PDG}$, Review of CKM Matrix elements]
- As s quark is heavier than light u / d quarks we can expect that the statistical uncertainty should be smaller than $B \rightarrow \pi \ell \nu$ determination.[Parisi ('84), Lepage ('89)]

- LHCb observed $B_{s}{ }^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ decay. [R. Aaij et al., PRL 126, 081804 (2021)]
- In this talk we report our on going study of form factors with domain-wall heavy quark.

Form factor extraction w/ zero-momentum

- The two-point and three-point functions used are -

$$
\begin{aligned}
C_{3, \mu}^{K \rightarrow B_{s}}(t, T) & =\sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{B_{s}}(\vec{x}, T) V_{b l}^{\mu}(\vec{y}, t) \mathcal{O}_{K}(\overrightarrow{0}, 0)^{\dagger}\right\rangle \exp [-i(\vec{q} \cdot \vec{y})] \\
C_{3, \mu}^{B_{s} \rightarrow K}(t, T) & =\sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{K}(\vec{x}, T) V_{l b}^{\mu}(\vec{y}, t) \mathcal{O}_{B_{s}}(\overrightarrow{0}, 0)^{\dagger}\right\rangle \\
C_{3, \mu}^{K \rightarrow K}(t, T) & =\sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{K}(\vec{x}, T) V_{l l}^{\mu}(\vec{y}, t) \mathcal{O}_{K}(\overrightarrow{0}, 0)^{\dagger}\right\rangle \\
C_{3, \mu}^{B_{s} \rightarrow B_{s}}(t, T) & =\sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{B_{s}}(\vec{x}, T) V_{b b}^{\mu}(\vec{y}, t) \mathcal{O}_{B_{s}}(\overrightarrow{0}, 0)^{\dagger}\right\rangle \\
C_{2}^{K}(t) & =\sum_{\vec{x}}\left\langle\mathcal{O}_{K}(\vec{x}, t) \mathcal{O}_{K}(\overrightarrow{0}, 0)^{\dagger}\right\rangle \exp \left[-i\left(\vec{p}_{K} \cdot \vec{x}\right)\right] \\
C_{2}^{B_{s}}(t) & =\sum_{\vec{x}}\left\langle\mathcal{O}_{B_{s}}(\vec{x}, t) \mathcal{O}_{B_{s}}(\overrightarrow{0}, 0)^{\dagger}\right\rangle
\end{aligned}
$$

With $V_{b l}^{\mu}(x)=\bar{b}(x) \gamma^{\mu} l(x), V_{l b}^{\mu}(x)=\bar{l}(x) \gamma^{\mu} b(x), V_{l l}^{\mu}(x)=\bar{l}(x) \gamma^{\mu} l(x)$ and $V_{b b}^{\mu}(x)=\bar{b}(x) \gamma^{\mu} b(x)$.

- $C_{3, \mu}^{B_{s} \rightarrow K}(t, T), C_{3, \mu}^{K \rightarrow K}(t, T), C_{3, \mu}^{B_{s} \rightarrow B_{s}}(t, T)$ are calculated with zero momentum insertion, as they are needed for zero momentum analysis only.
- B_{s} meson kept at rest.
- Two-point functions are always smeared at the source but are local or smeared at the sink while the three-point functions are always smeared at both source and sink. Needed to cancel overlap factors in the ratio.
- We express the three-point functions as

$$
C_{3,4}^{K \rightarrow B_{s}}(t, T)=\sum_{n, m} A_{n}^{B_{s}} A_{m}^{K^{*}} D_{4, n m}^{K \rightarrow B_{s}} \exp \left[-E_{n}^{B_{s}}(T-t)\right] \exp \left[-E_{m}^{K} t\right]
$$

Here $A_{n}^{B_{s}}=\frac{\langle 0| \mathcal{O}_{B_{s}}(\overrightarrow{0}, 0)\left|B_{s}^{n}\right\rangle}{\sqrt{2 E_{n}^{B}}}$ and $D_{4, n m}^{K \rightarrow B_{s}}=\frac{\left\langle B_{s}^{n}\right| V_{b l}^{4}(\overrightarrow{0}, 0)\left|K^{m}\right\rangle}{2 \sqrt{E_{n}^{B s} E_{m}^{K}}}$.

- We studied the ground state saturation

$$
R_{3 p 2 p}=\frac{C_{3,4}^{K \rightarrow B_{s}}(t, T)}{C_{2}^{K}(t) C_{2}^{B_{s}}(T-t)} \rightarrow \frac{D_{4,00}^{K \rightarrow B_{s}}}{A_{0}^{K} A_{0}^{B_{s}^{*}}}
$$

- Double Ratio : $\frac{C_{3,4}^{K \rightarrow B_{s}}(t, T) C_{3,4}^{B_{s} \rightarrow K}(t, T)}{C_{3,4}^{K \rightarrow K}(t, T) C_{3,4}^{B_{s} \rightarrow B_{s}}(t, T)} \rightarrow \frac{D_{4,00}^{K \rightarrow B_{s}} D_{4,00}^{B_{s} \rightarrow K}}{D_{4,00}^{K \rightarrow} D_{4,00}^{B_{s} \rightarrow B_{s}}}$
\Rightarrow No need for current renormalization. [Hashimoto et al., PRD 61, 014502 (1999)]

Comparison of $R_{3 p 2 p}$ and Double Ratio for $K \rightarrow B_{s}$ data

t / a

- The ground state contribution of $R_{3 p 2 p}$ and Double Ration are related as

$$
R_{3 p 2 p} A_{0}^{K} A_{0}^{B_{s}} \sqrt{Z_{V_{b l}}}=\sqrt{\text { Double Ratio }}
$$

Here, $\mathcal{V}_{b l}^{\mu}=Z_{V_{b l}} V_{b l}^{\mu} ; \quad Z_{V_{b l}}=\sqrt{Z_{V_{l l}} Z_{V_{b b}}}$

- Comparison of numbers obtained by these two methods on $100,32^{3} \times 64 \times 12$ configurations with $\beta=4.17, a \sim 0.08 \mathrm{fm}, m_{s}=0.04, m_{l}=0.019$. For the heavy quark $\operatorname{mass}\left(m_{Q}\right)$ we have three-points $m_{c}(0.44037), 1.25 \times m_{c}(0.55046)$ and $1.25^{2} \times m_{c}(0.68808)$.

m_{Q}	0.44037	0.55046	0.68808
$R_{3 p 2 p} A_{0}^{K} A_{0}^{B_{s}} \sqrt{Z_{V l}}$	$1.154(12)$	$1.177(12)$	$1.209(13)$
$\sqrt{\text { Double Ratio }}$	$1.1546(10)$	$1.1802(16)$	$1.2061(25)$

- In the $R_{3 p 2 p}$ ratio method the largest errors come from the measurement of $Z_{V_{b l}}$.
- Comparison of $\pi \rightarrow B$ and $K \rightarrow B_{s}$ data. The data is generated at four source positions and then averaged over for both the cases.

- The error bars are much smaller for $K \rightarrow B_{s}$ data.

Fitting

- Here we show the effective masses of K and B_{s}. The ground state contribution dominates around $t / a \geq 10$.

- The covariance matrix becomes singular for larger fit range. Apart from few eigen-values the statistical fluctuations of the eigen-values are of the same order as the eigen-values themselves.
- We report the result of uncorrelated fit in this talk.
- We included only the first excited state in our analysis.
- Fit formula for double ratio -

$$
\begin{aligned}
\frac{C_{3,4}^{K \rightarrow B_{s}}(t, T) C_{3,4}^{B_{s} \rightarrow K}(t, T)}{C_{3,4}^{K \rightarrow K^{\prime}}(t, T) C_{3,4}^{B_{s} \rightarrow B_{s}}(t, T)}= & C_{00}\left(1+A^{\prime}\left[\exp \left[-\Delta E_{K} t\right]+\exp \left[-\Delta E_{K}(T-t)\right]\right]\right. \\
& \left.+B^{\prime}\left[\exp \left[-\Delta E_{B_{s}} t\right]+\exp \left[-\Delta E_{B_{s}}(T-t)\right]\right]\right)
\end{aligned}
$$

- Ground state contribution

$$
C_{00}=\frac{\left(D_{4,00}\right)^{2}}{D_{4,00}^{K} D_{4,00}^{B_{s}}}=\frac{\left\langle B_{s}\right|\left(\bar{b} \gamma_{4} u\right)|K\rangle\langle K|\left(\bar{u} \gamma_{4} b\right)\left|B_{s}\right\rangle}{\langle K|\left(\bar{u} \gamma_{4} u\right)|K\rangle\left\langle B_{s}\right|\left(\bar{b} \gamma_{4} b\right)\left|B_{s}\right\rangle}=\frac{\left(M_{B_{s}}+M_{K}\right)^{2}\left(f_{0}\left(q^{2}\right)\right)^{2}}{4 M_{K} M_{B_{s}}}
$$

- We performed a simultaneous fit of K, B_{s} two-point functions and all the double ratios ($T=12,16,20,24,28$) together.
- We used jackknife method for error calculation of the fit curve. We did binning of raw correlators with bin size $=4$.

Fit results

C_{00} fit band

Form factor extraction for non-zero momenta

- In order to extract form factors at non zero momentum we consider the following ratio -

$$
\begin{gathered}
R_{4}\left(\vec{p}_{K}\right)=\frac{C_{3,4}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}\right)}{C_{3,4}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}=\overrightarrow{0}\right)} \times \frac{C_{2}^{K}\left(t, \vec{p}_{K}=\overrightarrow{0}\right)}{C_{2}^{K}\left(t, \vec{p}_{K}\right)} \\
f_{\|}\left(E_{K}\right)=\frac{\langle K| V^{0}\left|B_{s}\right\rangle}{\sqrt{2 M_{B_{s}}}}
\end{gathered}
$$

- We considered all possible combination $\left(p_{K}^{x}, p_{K}^{y}, p_{K}^{z}\right)$ with $p_{K}^{i}=-1,0,+1$
- $\left|\vec{p}_{K}\right|^{2}=1: \quad(+1,0,0) ;(-1,0,0) ;(0,+1,0) ;(0,-1,0) ;(0,0,+1) ;(0,0,-1)$
- In order to extract f_{\perp} we consider the following ratio

$$
\begin{gathered}
R_{i}\left(\vec{p}_{K}\right)=\frac{C_{3, i}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}\right)}{C_{3,4}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}\right)} \\
f_{\perp}\left(E_{K}\right)=\frac{1}{p_{K}^{i}} \frac{\langle K| V^{i}\left|B_{s}\right\rangle}{\sqrt{2 M_{B_{s}}}}
\end{gathered}
$$

Fit formulae

$$
\begin{aligned}
R_{4}\left(\vec{p}_{K}\right)= & \frac{C_{3,4}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}\right)}{C_{3,4}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}=\overrightarrow{0}\right)} \times \frac{C_{2}^{K}\left(t, \vec{p}_{K}=\overrightarrow{0}\right)}{C_{2}^{K}\left(t, \vec{p}_{K}\right)} \\
= & C_{44}\left(1+A \exp \left[-\Delta E_{B_{s}}\left(\vec{p}_{B_{s}}=\overrightarrow{0}\right)(T-t)\right]+B \exp \left[-\Delta E_{K}\left(\vec{p}_{K}=\overrightarrow{0}\right) t\right]\right. \\
& \left.+F \exp \left[-\Delta E_{K}\left(\vec{p}_{K}\right) t\right]\right) \\
R_{i}\left(\vec{p}_{K}\right)= & \frac{C_{3, i}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}\right)}{C_{3,4}^{K \rightarrow B_{s}}\left(t, T, \vec{p}_{B_{s}}=\overrightarrow{0}, \vec{p}_{K}\right)} \\
= & C_{4 i}\left(1+G \exp \left[-\Delta E_{B_{s}}\left(\vec{p}_{B_{s}}=\overrightarrow{0}\right)(T-t)\right]+H \exp \left[-\Delta E_{K}\left(\vec{p}_{K}\right) t\right]\right) \\
& f_{\|}\left(E_{K}\right)=C_{44} \sqrt{2 M_{K} C_{00}} ; \quad f_{\perp}\left(E_{K}\right)=\frac{C_{4 i} C_{44} \sqrt{2 M_{K} C_{00}}}{p_{K}^{i}}
\end{aligned}
$$

- We performed combined fit of $R_{4}\left(\vec{p}_{K}\right), R_{i}\left(\vec{p}_{K}\right), C_{2}^{K}\left(t, \vec{p}_{K}=\overrightarrow{0}\right), C_{2}^{K}\left(t, \vec{p}_{K}\right)$ and $C_{2}^{B_{s}}(t)$

Fit results for $|\vec{p}|^{2}=1, R_{4}\left(\vec{p}_{K}\right)$

C_{44} fit band

Fit results for $|\vec{p}|^{2}=1, R_{i}\left(\vec{p}_{K}\right)$

Form factors

- For comparison with $B \rightarrow \pi \ell \nu$ case [Colquhoun et al., PRD 106, 054502 (2022)] we convert $f_{\|}$and f_{\perp} to HQET motivated definition of form factors f_{1} and f_{2} :

$$
f_{1}\left(E_{K}\right)+f_{2}\left(E_{K}\right)=\frac{f_{\|}\left(E_{K}\right)}{\sqrt{2}} ; \quad f_{2}\left(E_{K}\right)=\frac{E_{K} f_{\perp}\left(E_{K}\right)}{\sqrt{2}}
$$

(a) $m_{Q}=m_{c}$

(b) $m_{Q}=1.25^{2} m_{c}$

- Fit functions are assumed to be polynomial of E_{K} only.
- Statistical uncertainty is $\sim 1 \%$. better than $B \rightarrow \pi \ell \nu$ by a factor of $\lesssim 3$.

Summary and Outlook

- We report JLQCD's study of $B_{s} \rightarrow K \ell \nu$ form factors with Möbius domain-wall heavy quarks
$\rightarrow m_{b}<0.7 a^{-1}$ to control discretization errors.
\rightarrow through correlator ratios \Rightarrow no need for current renormalization.
\rightarrow preliminary results at $a^{-1} \sim 2.5 \mathrm{GeV}, M_{\pi} \sim 500 \mathrm{MeV}$
- Statistical accuracy $\sim 1 \%$
\rightarrow averaged over 4 source-time slices
\rightarrow better than $B \rightarrow \pi \ell \nu$ (Lepage's arguments).
- Ground state saturation - studied by simulating 5 source-sink separations.
- On-going analysis at $a^{-1} \lesssim 4.5 \mathrm{GeV}$ and $M_{\pi} \gtrsim 230 \mathrm{MeV}$.

$\mathcal{T H A N K}$ YOU

