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Outline

1. Introduction

e Motivations of this work
e Basics of NSPT
e Why O(N) non-linear sigma model?

2. NSPT on O(N) non-linear sigma model

e From the first to the fourth order computations
e Presenting large fluctuations at high-orders

e Fluctuations tamed at large N

3. Conclusions
e As expected, less problems for larger N
e Ongoing simulations and work in progress

e Renormalons



Motivations and sketch of ideas

e The problem in three sentence:

1. Interested in calculating observables at high perturbative orders
2. Applications in lattice QCD have been incredibly fruitful

3. In low-dimensional systems: distributions are very difficult to explore

e We had already been aware of it for a long time

_ ~ 2000, R. Alfieri, F. Di Renzo, E. Onofri, L. Scorzato:
Understanding stochastic perturbation theory: toy models and statistical analysis

Also other groups know it:
A. Ramos, G. Catumba : private communication

We revisited this topic after finding the same fluctuations in perturbative

expansions around 1d QM non-trivial vacua | xr7ic620 / pos P Ragion, F. Di Renzo:
NSPT around instantons

[ The natural guess : less problems for more degrees of freedom ]




The lattice model

We consider the Euclidean O(N) non-linear sigma model in 2D

1

S:%

d*z (0,8) - (0,8) s(x)-s(x)=1

We will study it on a 2D lattice:

8 | B
S:——st-sx+u [ S, S, =1 ]
ga?,u

L - A local constraint

N-component real scalar field

This is what we need:

e We can tune the parameter N (modifying the number of degrees of freedom)
o It is closely related to other very interesting models

e It shares some interesting features with QCD



Solving the constraints

|dentifying the correct degrees of freedom:

4= /H ds; 6(s* —1) e Lap S Sats Sy = (71'33, Ua:)

[0:,; = e(x)/1 — 72 ]

e The constraint disappears thanks to rescaling T2 — gm?

* A theory with only 7 fields

1 Aur)? =LA \/1—g72)2 | =L log (1—gn?
Z=/Hdﬂ'xe2“"’“{( "l g)} 2 108 (1702)

* Interaction terms in Taylor series:

Very complicated! at each order, new interaction vertices are generated
(not a problem for us...)




Basics of NSPT

Langevin equation for stochastic evolution
r |
0¢;(7) 0S¢ : ,
= — - (nj(T))n =0 (05 (7)1 (7°) ) = 20510(T — 7°)
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Fokker-Planck equation
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We solve the Langevin equation numerically order-by-order!

6;(7) = (1) + DA (7) + Euler integrator (simplest choice)

n>0

- 9G (0
qﬁ(.o.) _ qﬁg.oi) _ AT 9511 +V2AT 1, e Set of hierarchical equations

.777'+1 i a¢ ] ’1,
oD = oM A r0S571(1) e Exact at any order in perturbation theory
7 i T| Qa7 )
e L0¢ i e Perturbative expansion of observables

(O)N) = (OO (6®) + MOD (B, 60) + 32O ($), 61, 6)) +



NSPT on O(N) non-linear sigma model

Approaching the problem using NSPT

. . . . ) 1 — 971'2 . 1 — 971'2 ) gﬂ-j . )
_ Y+, Y— U, Y, L/ J
Wi,m = ”i,i + AT Z{”iﬂm + Wi—m - 7@,7: (\/ 7 T \/ 2 + AT 2 + ZAT”y,j

u

Pay close attention to the observable to compute

J i >
<7Tk My
Infrared-undefined propagator

1
= 3 (s 50ry) = (5(0) - s(1)) = g(m(0) - w(1)) + (/1 + g3/ 1+ gm2)
sites T, (L Well-defined propagator

... and also at zero-mode

e Many different possible regularizations

1978, S. Elitzur : The applicability of perturbation
expansion to two-dimensional Goldstone system



NSPT on O(N) non-linear sigma model

We run a variety of simulations :

2D, 20x20 lattice From O(3) to O(45) n=1,..,14,..23

only for large N
(actually ongoing)

e Dealing with finite stochastic time step effects

o At the orders analytically known very small finite size corrections (only a few per mille)

10+
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NSPT on O(N) non-linear sigma model

We run a variety of simulations :
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e Dealing with finite stochastic time step effects
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NSPT on O(N) non-linear sigma model

At low perturbative orders, we have good signals for every N

The situation changes when we reach high perturbative orders

We observe large deviations for small N

However, it seems that the situation remains under control for large N

0 5 4 6 3 10 o 1 2 3 4 5 6 7 8 9 10
MC steps (units of A7) x10* MC steps (units of A7) x10*



NSPT on O(N) non-linear sigma model

Trying to be more precise... what happens to the mean during MC sampling?

Cumulative mean:

Difficulties in estimating the mean at high orders for small N

Our initial guess seems to hold true:
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deviations under control as | increase the number of degrees of freedom
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NSPT on O(N) non-linear sigma model

Cumulative Standard Deviation (n = 3)

The situation is even worse when considering the estimation of the

standard deviation of the distributions order-by-order

Cumulative Standard Deviation:

B0 = /(B2 — (B2

Still, performing simulations at larger and larger N, it seems that:

e We are dealing with distributions that are easier to explore (the oscillations are mostly absorbed)
e This is true even considering the same amount of computational time
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NSPT on O(N) non-linear sigma model

Is it just a matter of the number of degrees of freedom?

O(5) on a 2D 66x66 lattice VS O(45) on a 2D 20x20 lattice

We will certainly have effects of lattice self-averaging

However, volume does not tame large n fluctuations!

-3 —0(), L=66 |
——0(45), L =20

Normalized cumulative mean, n = 14
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NSPT on O(N) non-linear sigma model

In the end: searching a quantitative description ...
Perhaps the relative errors can help us

From general considerations, we expect relative errors to increase with the order
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NSPT on O(N) non-linear sigma model

In the end: searching a quantitative description ...
Perhaps the relative errors can help us

From general considerations, we expect relative errors to increase with the order
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NSPT on O(N) non-linear sigma model

‘5E(n)/E(n)‘

In the end: searching a quantitative description ...
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Perhaps the relative errors can help us

From general considerations, we expect monotonically decreasing trends in N
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NSPT on O(N) non-linear sigma model

In the end: searching a quantitative description ...

Perhaps the relative errors can help us

From general considerations, we expect monotonically decreasing trends in N
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NSPT on O(N) non-linear sigma model

One possible following application:

performing asymptotic computations

5 0(45), L =20

Preliminary

10

15

... 1.e. finding evidence of renormalons in non-linear sigma models

Still preliminary result:

currently ongoing simulations
at higher-orders



Summary and perspectives

We numerically show that :

e Distributions (as expected) difficult to explore in small N O(N) non-linear sigma model
e Increasing number of DoF per site ( i.e. tuning N ) implies more friendly distributions

e This is not a trivial effect of lattice (self)averaging (i.e. it is an N, not L effect)

Very near future works :

e More quantitative description, in particular relation between N and n

e Capturing asymptotic behaviour (renormalons)

Longer term plan :

o Tacking CPV=1

e In this framework: perturbative expansion around non-trivial vacua



Thank you for your
attention!



