Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison wi physical phase transition

More evidence

Conclusion

Staggered rooting and unphysical phases at finite baryon density

Chik Him (Ricky) Wong¹

S. Borsányi¹, M. Giordano², J. Guenther¹, A. Pásztor²

1: University of Wuppertal 2:Eötvos University

LATTICE 2023

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rootin at $\mu_B > 0$

Comparison with physical phase transition

More evidence

Conclusion

Introduction

- Lattice QCD simulations at finite density μ_B are typically based on analytic continuation from imaginary μ_B or Taylor expansion from $\mu_B = 0$, which becomes more unreliable as real μ_B increases
- In our search of critical point, in order to go further in μ_B , we attempt to do simulations directly at real $\mu_B > 0$ without relying on analytic continuation
- This can be done by reweighting:
 - Reweighting from $\mu_B = 0$
 - Sign Reweighting
 - Phase Reweighting
- In our recent calculations at $\mu_B > 0$ based on staggered action, problematic behavior is observed and it is believed to be due to rooting
- The goal of this talk:
 - Our investigation of such issue and possible resolutions

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison with physical phase transition

More evidence

Conclusion

Introduction

Goal: N_f = 2 + 1 QCD simulation at μ_B > 0 and T > 0
Grand canonical partition function:

$$Z = \operatorname{Tr} \left[e^{-(H_{\text{QCD}} - \mu_u N_u - \mu_d N_d - \mu_s N_s)/T} \right]$$
$$p = \frac{T}{V} \ln Z \equiv \hat{p} T^4$$

Observables of interest:

- Light quark density $\hat{n}_L \equiv \frac{\partial \hat{p}}{\partial \hat{\mu}_q}$ • Susceptibility $\chi_n^l = \frac{\partial^n \hat{p}}{\partial \hat{\mu}_q}$
- \hat{p} and its derivatives can be expanded in Taylor series in $\hat{\mu}_q$
- Scenario considered in this talk:

$$\hat{\mu}_q \ T \equiv \mu_q \equiv \mu_u = \mu_d = rac{1}{3} \mu_B, \ \mu_s = 0$$

• To illustrate the issue, we will contrast with the scenario at finite μ_I : $\hat{\mu}_q T \equiv \mu_q \equiv \mu_u = -\mu_d = \mu_I, \ \mu_s = 0$

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison wit physical phase transition

More evidence

Conclusion

Reweighting

Simulation is impossible/hard in target ("t") action
 ⇒ reweight from simulated ("s") action:

$$egin{aligned} D_t &= rac{\int D\phi w_t(\phi) O(\phi)}{\int D\phi w_t(\phi)} = rac{\int D\phi w_s(\phi) rac{w_t(\phi)}{w_s(\phi)} O(\phi)}{\int D\phi w_s(\phi) rac{w_t(\phi)}{w_s(\phi)}} = rac{\left\langle rac{w_t}{w_s} O
ight
angle_s}{\left\langle rac{w_t}{w_s}
ight
angle_s}, \ &Z_t &= \left\langle rac{w_t}{w_s}
ight
angle_s, \ &Z_t = \int D\phi w_t(\phi), \ w_t(\phi) \in \mathbb{C}, \ \ Z_s = \int D\phi w_s(\phi), \ w_s(\phi) > 0 \end{aligned}$$

• Problems getting exponentially hard as V increases:

- Sign problem: $\frac{w_t}{w_t} \in \mathbb{C}$
- Overlap problem: $\rho\left(\frac{w_t}{w_s}\right)$ has long tail

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison wit physical phase transition

More evidence

Conclusion

Reweighting schemes

• Three reweighting schemes are considered: • Reweighting from $\mu_B = 0$: $\frac{w_t}{w_s} = \frac{\det M(\mu_B)}{\det M(0)}$

$$w_t = e^{-S_g} \det M(\mu_B), \ w_s = e^{-S_g} \det M(0)$$

• Reweighting from Phase Quenched(PQ): $\frac{W_t}{W_s} = e^{i\theta(\mu_B)}$

$$w_t = e^{-S_g} \mid \det M(\mu_B) \mid e^{i\theta(\mu_B)}, w_s = e^{-S_g} \mid \det M(\mu_B) \mid$$

• Reweighting from Sign Quenched(SQ): $\frac{W_t}{W_c} = \operatorname{sign}(\cos\theta(\mu_B))$

$$w_t = e^{-S_g}$$
 Re det $M(\mu_B)$, $w_s = e^{-S_g}$ |Re det $M(\mu_B)$ |

- Phase Reweighting and Sign Reweighting avoid overlap problem
- Sign Reweighting has milder sign problem than Phase Reweighting [de Forcrand et al, NPB Proc. 2003; S. Borsanyi et al, Phys. Rev. D 105, L051506,2022]

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison with physical phase transition

More evidence

Conclusion

Staggered Rooting at $\mu_B > 0$

• Consider
$$N_f = 2 + 1$$
 at $\mu_q \equiv \mu_u = \mu_d = \mu_B/3$ and $\mu_s = 0$:
 $Z = \int dU [\det M_l(U, \mu_q)]^{\frac{1}{2}} [\det M_s(U)]^{\frac{1}{4}} e^{-S_g(U)}$

• Definition of $(\det M_l)^{1/2}$ becomes ambiguous since now $\det M_l \in \mathbb{C}$

- Standard treatment: e.g.[Z. Fodor,S. Katz, JHEP 0203 (2002) 014; JHEP 0404 (2004) 050] Choose the root that continuously connects to the positive root at $\mu_B = 0$
- Question: Is it always the correct strategy to predict the right physics? How can we tell? [M. Golterman et al, PhysRevD 74(2006) 071501]

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

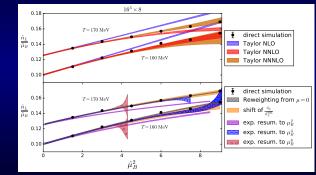
Comparison with physical phase transition

More evidence

Conclusion

Staggered Rooting at $\mu_B > 0$

• In our reweighting simulations [S. Borsanyi et al, PhysRevD.107.L091503 (2022)], \hat{n}_L at high *T* agrees with Taylor expansion



Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

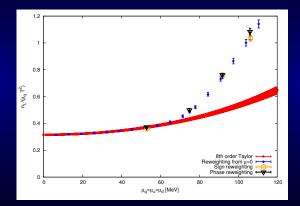
Comparison with physical phase transition

More evidence

Conclusion

Staggered Rooting at $\mu_B > 0$

• Yet all three reweighted results deviate from it at low T:



Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

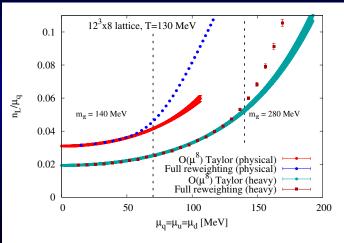
Comparison wit physical phase transition

More evidence

Conclusion

Staggered Rooting at $\mu_B > 0$

• This is observed at different pion masses, and the deviation becomes significant beyond $\mu_B \approx 3 m_{\pi}/2$



Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

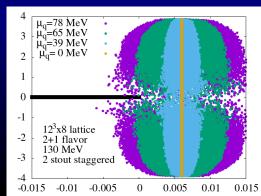
Comparison with physical phase transition

More evidence

Conclusion

Staggered Rooting at $\mu_B > 0$

- Rooting of $\det M_l$ introduces a branch cut in the spectrum
- Analytic continuation from positive determination of the real square root \Rightarrow The branch cut is along the negative real axis
- At $\hat{\mu} = 0$, the spectrum stays on the imaginary axis \Rightarrow no ambiguity
- Turning on $\hat{\mu}$, the spectrum spreads out in the complex plane
- Such spread increases with $\hat{\mu}$
- Eventually a significant portion comes close to or crosses the branchcut ⇒ creates ambiguity of which root is to be taken



Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison with physical phase transition

More evidence

Conclusion

Staggered Rooting at $\mu_B > 0$

• For $N_f = 4$, det $M(\hat{\mu})$ can be expressed as follows in the temporal gauge: [Hasenfratz, Toussaint 1991]

$$\det M(\hat{\mu}) = e^{-3V\hat{\mu}} \prod_{i=1}^{6V} \left(\xi_i - e^{\hat{\mu}}\right)$$

where ξ_i are $6V = 6N_x N_y N_z$ eigenvalues of reduced matrix *P* that depend only on *U* and not μ

$$P = -\begin{pmatrix} N_{I}^{t-1} \\ \prod_{i=0}^{t} P_{i} \end{pmatrix} L, \ P_{i} = \begin{pmatrix} B_{i} & 1 \\ 1 & 0 \end{pmatrix} B_{i} = \eta_{4}(D^{(3)} + am)|_{t=i}, \ L = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} = \begin{pmatrix} U_{4} & 0 \\ 0 & U_{4} \end{pmatrix}|_{t=N_{I}-1} =$$

• Rooting becomes:

$$[\det M_l(\hat{\mu})]^{1/2} = (\det M_l(0))^{1/2} \prod_{i=1}^{6V} \sqrt[c]{\frac{\xi_i e^{\frac{\hat{\mu}}{2}} - e^{-\frac{\hat{\mu}}{2}}}{\xi_i - 1}}$$

- $[\det M(\hat{\mu})]^{1/2}$ therefore has a branchcut that creates ambiguity of which root is to be taken
- The portion of eigenvalues close to or crossing the branchcut increases with $\mu_B \Rightarrow$ Rooting becomes more ambiguous
- On the other hand, Taylor coefficients are computed at $\mu_B = 0$
- \Rightarrow a non-analytic deviation between the two

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rootin at $\mu_B > 0$

Comparison with physical phase transition

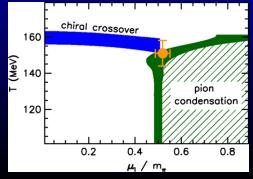
More evidence

Conclusion

Comparison with physical phase transition

- In the case of µ_u = −µ_d ≡ µ, µ_s = 0, i.e. phase quenched (PQ), no complex rooting is involved
 |det M(µ)|² = det M(µ_u = µ) det M(µ_d = −µ)
- it is equivalent to introducing an isospin chemical potential $\mu_I = \mu$
- It is well known that at $\mu_I \sim m_\pi/2$ at low *T*, there is a transition to pion-condensed phase

[Brandt, Endrödi, Schmalzbauer; PRD97, 054514 (2018); D.T. Son, M. Stephanov, Phys. Rev. Lett. 86 (2001) 592-595]



Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

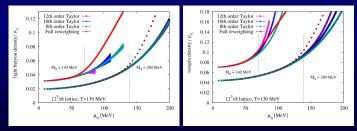
Comparison with physical phase transition

More evidence

Conclusion

Comparison with physical phase transition

- If one probes physics at finite $\mu_I = \mu$ with $\mu_q = 0$ ensemble, a physical phase transition is observed at $\mu_I \approx m_{\pi}/2$ in both reweighted measurement and Taylor extrapolations
- If instead, one probes $\mu_q = \frac{1}{3}\mu_B = \mu$ with the same $\mu_q = 0$ ensemble, the reweighted measurements deviate from the Taylor extrapolations



• \Rightarrow The observed rise in the density with rooting is due to a singularity different from what is expected for a thermodynamic transition

Chik Him (Ricky) Wong¹

Introduction

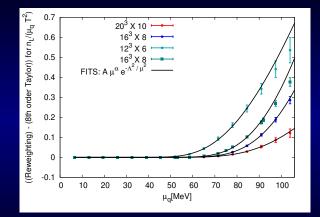
Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison with physical phase transition

More evidence

Conclusion



- Such effect decreases with lattice spacing:
 - The effect is reduced by replacing stout-smearing with hex-smearing
 - also decreases as lattice spacing shrinks

More evidence

0.4 0.4 12th order Taylor 12th order Taylor 10th order Taylor 10th order Taylor 0.35 0.35 8th order Taylor 8th order Taylor Full reweighting Full reweighting density/μ_a 0.3 0.25 0.25 tht baryon 0.2 0.2 0.15 $M_{-} = 260 \text{ MeV}$ 0.15 $M_{-} = 260 \text{ MeV}$ 4 flavor 4 flavor 123x8 lattice, T=100 MeV 0.1 123x8 lattice, T=100 MeV 0.05 0.05 50 100 150 200 50 100 150 $\mu_1 = \mu_2 = \mu_3 = \mu_4 [MeV]$ $\mu_1 = \mu_2 = \mu_0 [MeV]$

• Test this on $N_f = 4$:

Staggered rooting and unphysical phases at finite baryon density Chik Him (Ricky)

Wongl

at $\mu_{\mathbf{R}} > 0$

More evidence

- It is not observed if not rooted (μ_q turned on for all four quarks)
- It is observed if rooted (μ_q turned on for only two quarks)
- Hints further that rooting is the culprit
- Is it better to simulate $N_f = 4$ then?
 - Sign problem is much worse $\ln \langle e^{i\theta} \rangle \propto \left(\frac{N_f \mu}{T}\right)^2 (LT)^3$
 - Less relevant to phenomenology

200

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison with physical phase transition

More evidence

Conclusion

Conclusion

- In our simulations using rooted staggered actions at real $\mu_B > 0$, it is observed that at low *T*, the reweighted result deviates from Taylor extrapolations in the form of a sharp increase in light quark density beyond $\mu_B \approx 3m_{\pi}/2$
- Based on our investigation, such deviation decreases with spacings. It is likely that this behavior is a consequence of rooting and unphysical
- It is possible to remove the non-pertubative ambiguity by changing the definition of the finite μ determinant with geometric matching [M. Giordano et al, PhysRevD.101.074511(2020)], but this is a mixed action setup that non-locally modifies the determinant \Rightarrow further investigations needed
- The feasibility of using a minimally doubled action, Karsten-Wilczek action, is being investigated.
 More details will be discussed in Talks of R. Vig (Tue 16:20) and D. Godzieba (Tue 16:40). [Related: Talk by J. Weber (Wed 09:20)]

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

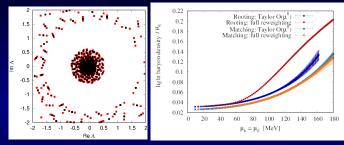
Comparison wil physical phase transition

More evidence

Conclusion

Geometric matching [Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 2020]

Replace neighboring eigenvalue doublets of ξ with geometric means (i.e. root before turning on μ)



- Feasible if one obtains all eigenvalues and taste breaking is not too severe(doublets recognizable)
- Non-perturbative terms at $\mu = 0$ zero are forbidden (no non-perturbative ambiguity), but different pairing algorithms (at finite spacing) will lead to different Taylor coefficients (a perturbative ambiguity)
- Redefined determinant no longer represents the target action ⇒ turned into mixed action simulation

Chik Him (Ricky) Wong¹

Introduction

Reweighting

Staggered Rooting at $\mu_B > 0$

Comparison wi physical phase transition

More evidence

Conclusion

Finite volume effects?

• It is observed in different volumes

