
Status of OpenMP Target Offloading in Grid

July 31-August 4, 2023
Lattice 2023, Fermilab, Batavia, IL

Meifeng Lin
Computational Science Initiative, Brookhaven National Laboratory

Exascale Meets Lattice QCD
• Exascale HPC systems in the US will feature

different types of compute accelerators, each
with own native/preferred programming API

• Portability across different architectures is
essential!

Aurora

Perlmutter (Pre-Exascale)

Frontier

NVIDIA GPUs (CUDA)

Intel GPUs (SYCL) AMD GPUs (HIP)

• ECP Application Development for Lattice QCD

• 4 DOE labs: ANL, BNL, Fermilab, Jefferson Lab

• 7 university partners: Boston University,
Columbia University, University of Illinois,
Indiana University, Stony Brook University,
University of Utah, William and Mary

• 4 Working Groups targeting different areas:
• Workflow/Contractions
• Critical Slowing Down
• Linear Solvers

• Data-Parallel API

Workflow

Applications

Algorithms

Data Parallel Frameworks

Libraries

US Exascale Lattice QCD Software Suite

AMD
GPU

Intel
GPU

NVIDIA
GPU

Target

Multi-pronged
approach

Currently
focused on
architecture-
specific
programming
models for best
performance

Also exploring
OpenMP
offloading for
better
portability

Chroma MILC CPS HotQCDApplications

QUDA GridLibraries

CUDA SYCL/DPC++HIP OpenMP
Programming
Model

OpenMP
OpenMP is an API for multithreading that was first developed in

1997 for Fortran.
Later, support for C/C++ was added.
Originally it only supported Shared-Memory parallel computing

on multicore architectures.
Since OpenMP 4.0, it added support for “target offloading” on

heterogenous architectures, such as CPU+GPU.
Version 5.2 was released in November 2021. PDF/HTML

versions are on www.openmp.org. Book on Amazon.
Now supports several programming and memory models,

including shared-memory parallelism, task parallelism, and
host-device heterogenous computing.

API specification in more than 600 pages!

www.openmp.org

http://www.openmp.org/
http://www.openmp.org/

OpenMP for Shared-Memory Parallelism
OpenMP uses the fork-join model for multithreading.

• The main thread will spawn several parallel child threads when a parallel region is
encountered.

• The parallel threads will re-join once exiting the parallel region.
Shared Memory: All the threads have access to the same memory space.

• No on-node data transfer needed.
• Need to avoid data race: when more than 1 thread tries to access the same memory.

OpenMP uses a set of compiler directives and API function calls.

Compatible compilers will use “-fopenmp” or similar to enable OpenMP
parallelization. The OpenMP directives are ignored if the compiler does not
support them.

!$OMP PARALLEL
PRINT *, “Hello from process: ”,
OMP_GET_THREAD_NUM()
!$OMP END PARALLEL

#pragma omp parallel
{

printf(“Hello from process: %d\n”,
omp_get_thread_num());
}

Starts a parallel region

OpenMP for GPU Computing
• To enable GPU computing, OpenMP uses the “target offloading” model.
• When the target region is encountered, the main thread will attempt to initiate

the computation on the target device, e.g., the GPU in this case.
• Data will be moved to/from the GPU as needed/specified by the user.
• Two ways to do this:

• Explicit data management
• Managed memory

• OpenMP is a specification; actual support and implementations for different
GPU architectures depend on the compilers.

6

GPU

SMP
SMP SMP

SMP
CPU

DRAM GPU memory

A simple example target – indicates the code block below
will be executed on the target device.

teams – indicates there will be a league of
teams doing the work

distribute – the teams will share the work
(usually outer loop iterations)

parallel – the work will be shared by
parallel threads

How teams/distribute/parallel map to the
GPU architectures depends on the
compiler

map copies the data associated with the
variables to or from the target memory.

int main(int argc, char* argv[]){
int N=10000;
float x=1.0;
float y=2.0;
float out[N];

#pragma omp target teams distribute parallel for \
map(to:x,y) map(from:out[0:N])

for(int n=0;n<N;n++) {
out[n]=x*y;

}
return 0;

}

Can compile with gcc for NVIDIA GPUs:
g++ -fopenmp -omptargets=nvptx64sm_75-nvidia-linux

Comparison with CUDA - Kernels
OpenMP

• GPU kernels can be generated
implicitly by the compiler inside target
region for inline functions.

• There is no additional kernel launch
call. Kernel launch is implicit inside the
target region with default thread/teams
numbers.

• Can also write specific kernel functions
with #pragma omp declare target

• Can specify #of teams/# of threads by
num_teams and thread_limit

#pragma omp target teams distribute parallel
for num_teams(32) thread_limit(128)

CUDA

• GPU kernel functions need to be
explicitly defined with __global__
decorator

if (i < n) y[i] __global__ void saxpy(int n, float a,
float *x, float *y) { int i = blockIdx.x*blockDim.x +
threadIdx.x; = a*x[i] + y[i]; }

• Kernel launch with <<<, >>>
saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);
• Need to specify # of

threadblocks/threads explicitly.
• Note that you need to have the device

pointers (unless you use UVM) in the
kernel calls.

main:
9, #omp target teams distribute parallel for

9, Generating Tesla and Multicore code
Generating "nvkernel_main_F1L9_1" GPU kernel

11, Loop parallelized across teams and threads, schedule(static)

Comparison with CUDA – Data Management

OpenMP
• OpenMP uses the “map” clauses to

manage data between CPU and GPU
• #pragma omp target map (tofrom:x)
• to/from is from the host perspective
• Some data are copied implicitly at the

kernel launch, such as scalars
(firstprivate by default)

• Can use unstructured data clauses for
more flexibility

• #pragma omp target enter data
map(alloc:x[0:N])

• #pragma omp target exit data
map(from:x[0:N])

• Also supports API calls, e.g.,
omp_target_alloc, etc.

CUDA
• Need to allocate host and device

memory explicitly
• Need to be careful about which

pointers to use, host or device
• cudaMemcpy copies data to/from the

device
• Unified Virtual Memory/Managed

Memory greatly simplifies data
management with
cudaMallocManaged allocator for both
the host and device memory.

• CUDA runtime page faults retrieve
device/host data as necessary

The Grid C++ QCD Library

Data Layout for Lattice QCD
• Canonically use volume-size Arrays of Structs (site-local objects)

• psi[t][z][y][x][Ns][Nc][2]
• Site-local operations highly nonlinear
• Not SIMD friendly

• Could also rearrange the indices: make one of the lattice dimensions inner index
• psi[t][z][y][Ns][Nc][2][x]
• Could potentially vectorize over x
• Choice of Lx becomes inflexible (has to be multiples of the SIMD length)

• Further decompose the lattice into sub-lattices (virtual nodes) [P. Boyle, 1512.03487]

 16
SIMD lanes

Mapping SIMD Data Layout Onto GPUs

• Same SIMD layout can also work on GPUs
• Map SIMD lanes onto GPU threads, and “virtual nodes” onto thread blocks
• Basically treat GPUs as very wide SIMD machines

GPU threads

A thread block

 19

• Grid[1] is a C++ library for lattice QCD

• Initially designed for SIMD architectures with long
SIMD length (Intel Knights Landing, Skylake, etc.).

• Arranges the data layout as if the lattice is divided
into virtual “sub-lattices”.

• Each sub-lattice uses one SIMD lane.

• Same data layout can be mapped to GPU architectures

• SIMD lanes on CPUs map to GPU threads

• Requires some data manipulation under the hood

Data mapping on SIMD architecture

Data mapping on SIMT architecture

[1] P. Boyle et al., arXiv:1512.0348, https://github.com/paboyle/Grid

Grid’s Performance Portable Design
• Header file with macros to encapsulate architecture-dependent implementations
• Currently the main Grid repo supports CUDA, SYCL and HIP

• Common MemoryManager API for dynamic memory allocation on different architectures

#ifdef GRID_NVCC
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
#define accelerator_for (…) { //CUDA kernel}

#elif defined (GRID_OMP)
#define strong_inline __attribute__((always_inline)) inline
#define accelerator
#define accelerator_inline strong_inline
#define accelerator_for(…) thread_for(…) //for loop with #pragma omp parallel for

void *MemoryManager::AcceleratorAllocate(size_t bytes){
…
ptr = (void *) acceleratorAllocDevice(bytes);

}

Architecture-specific
implementations

OpenMP Offloading in Grid
New macro definitions for accelerator_for, accelerator_inline etc.

MemoryManager with OpenMP APIs

#elif defined (OMPTARGET)
#define accelerator_inline strong_inline
#define accelerator_for(iterator,num,nsimd, ...) \
{ \

_Pragma("omp target teams distribute parallel for”) \ naked_for(iterator, num, {
__VA_ARGS__ }); \
}

inline void *acceleratorAllocDevice(size_t bytes) {
int devc = omp_get_default_device();
ptr = (void *) omp_target_alloc(bytes, devc);

}

Can also specify #
of threads/blocks

Unified Shared/Virtual Memory for Comparison
#ifdef OMPTARGET_MANAGED

if (ptr == (_Tp *) NULL) auto err = cudaMallocManaged((void **)&ptr,bytes);

Compute

Data

GridMini
www.github.com/meifeng/GridMini

• A substantially reduced version of Grid for
easy experimentation with different
programming models.

• Retains same Grid structure: data
structures/types, data layout, aligned
allocators, macros, …

• Only keeps the high-level components
necessary for the benchmarks.

• SU(3)✕SU(3) benchmark: STREAM-like
memory bandwidth test

• Important as LQCD is bandwidth bound. Also
data movement is the major challenge when
porting to GPUs.

• Useful in the early days of OpenMP
offloading experiments as the compilers were
being developed.

Benchmark_su3

LatticeColourMatrix z(&Grid); //Arrays of SU(3)
LatticeColourMatrix x(&Grid); //Arrays of SU(3)
LatticeColourMatrix y(&Grid); //Arrays of SU(3)

double start=usecond();
for(int64_t i=0;i<Nloop;i++){

z=x*y;
}
double stop=usecond();
double time=(stop-start)/Nloop*1000.0;

double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
double bandwidth=bytes/time; //GB/s
double Gflops=flops/time; //0.9 flops/byte SP13

Summary of Current Status
• Porting full Grid to OpenMP offloading is in progress.

• Added OpenMP target backend for both the compute and data management.
• Haven’t added SIMT layout support to the OpenMP target backend.
• Code compiles and runs on NVIDIA and Intel GPUs using LLVM-based compilers. There are still some

linking issues on AMD GPUs (stack size overflow).
• Starting from the miniapp laid a good roadmap for porting.

• GridMini runs on NVIDIA, AMD and Intel GPUs, and works with different compilers.
• However, moving from GridMini to Grid still exposes many issues:

• Layered abstraction makes it hard to identify bugs with data movement => often the main point of
failure.

• Compilers are constantly evolving:
• Good – bugs get fixed quickly;
• Bad – performance can degrade due to internal compiler changes.

• Performance can also depend on runtime parameters (# of threads/block, etc.)
• important to perform manual/auto tuning.

14

GridMini Performance on NVIDIA GPU
● llvm map: explicit data mapping with

OpenMP offloading with malloc as the
memory allocator

● llvm managed: OpenMP offloading with
cudaMallocManaged as memory allocator

● llvm map+managed: explicit data
mapping with cudaMallocManaged as
memory allocator

● nvcc managed: CUDA implementation
with cudaMallocManaged (same data
layout; no CUDA-specific optimizations)

● Compiler Version:
○ clang++: llvm/12.0.0-git_20210117
○ nvcc: CUDA 11

● Hardware platform: Cori-GPU with
NVIDIA V100 GPU

%\WHV

*
%
�V

�

���

���

���

���

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

���
�(
��
�

OOYP�PDS OOYP�PDQDJHG OOYP�PDS�PDQDJHG QYFF�PDQDJHG

Bak, Seonmyeong, et al. "OpenMP application experiences: porting to accelerated
nodes." Parallel Computing 109 (2022): 102856.

Chapman, Barbara, et al. "Outcomes of OpenMP Hackathon: OpenMP Application
Experiences with the Offloading Model (Part I&II)." International Workshop on OpenMP.
Springer, Cham, 2021.

Grid OpenMP offloading Performance
● Choice of # of threads/block affects

performance.
● OpenMP and CUDA have different optimal

values

16

L=24, memory footprint = 1.43E+08 bytes
Compilers: Clang-15.0.0 + CUDA-11.4

GridMini Performance on AMD GPU

● Compiler Version:
○ Rocm4.5

● Hardware platform: BNL lambda1 with AMD
Raedon Pro VII GPU and AMD 24-core Ryzen
Threadripper 3960X CPU

● L=24, memory footprint= 1.43E+08 bytes
● Best performance is with 256 threads/block

Conclusions and Outlook
• Compiler support for OpenMP target offloading has improved

greatly in the past few years.
• However, getting OpenMP offloading to work with complicated

C++ codes such as Grid is still quite challenging.
• Grid has exposed many issues with the current compilers.
• We have worked very closely with the LLVM compiler developers to

identify and fix these issues.
• Debugging, testing and performance tuning on Frontier and

Aurora hardware is in progress.
• TODO: Comparison with CUDA/HIP/SYCL implementations.

18

Acknowledgments
• This work was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of

the U.S. Department of Energy’s Office of Science and National Nuclear Security
Administration, responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s exascale computing
imperative.

