Brookhaven

National Laboratory

Status of OpenMP Target Offloading in Grid

Meifeng Lin
Computational Science Initiative, Brookhaven National Laboratory

July 31-August 4, 2023
Lattice 2023, Fermilab, Batavia, IL & f i @BrookhavenLab

Exascale Meets Lattice QCD

* Exascale HPC systems in the US will feature e ECP Application Development for Lattice QCD

different types of compute accelerators, each + 4 DOE labs: ANL, BNL, Fermilab, Jefferson Lab
with own native/preferred programming API

* 7 university partners: Boston University,
Columbia University, University of lllinois,
Indiana University, Stony Brook University,
University of Utah, William and Mary

* Portability across different architectures is
essential!

* 4 Working Groups targeting different areas:
* Workflow/Contractions
e Critical Slowing Down
 Linear Solvers

1

S Perimter, |

Perimutter (Pre-Exascale)

Intel GPUs (SYCL) AMD GPUs (HIP)

Applications

%0k R

& ENERGY Dewersy | T “& JINTTTER

)| o— 0— o * Data-Parallel API

AMDI

Aurora Frontier Libraries
~ - ’:\ EXASCALE
G Brookhaven E\(\g\)P SRR

National Laboratory

US Exascale Lattice QCD Software Suite

Multi-pronged

Chroma MILC CPS HotQCD approach
Currently
focused on
: : architecture-
| specific
-
‘

programming
models for best
performance

Also exploring
OpenMP
offloading for
better
portability

L:> Brookhaven E\(C\\)F’ e

National Laboratory

OpenMP

OpenMP is an API for multithreading that was first developed in
1997 for Fortran.

Later, support for C/C++ was added.

Originally it only supported Shared-Memory parallel computing
on multicore architectures.

Since OpenMP 4.0, it added support for “target offloading” on
heterogenous architectures, such as CPU+GPU.

Version 5.2 was released in November 2021. PDF/HTML
versions are on www.openmp.ore. Book on Amazon.

Now supports several programming and memory models,
including shared-memory parallelism, task parallelism, and
host-device heterogenous computing.

API specification in more than 600 pages!

L}\Brookhaven' E\(\g\\)p SCEE

National Laboratory

OpenMP

Application Programming Interface
Specification Version 5.1

OpenMP Architecture Review Board | openmp.org

www.openmp.org

http://www.openmp.org/
http://www.openmp.org/

OpenMP for Shared-Memory Parallelism

OpenMP uses the fork-join model for multithreading.
« The main thread will spawn several parallel child threads when a parallel region is

encountered.
« The parallel threads will re-join once exiting the parallel region.

Shared Memory: All the threads have access to the same memory space.

* No on-node data transfer needed.
* Need to avoid data race: when more than 1 thread tries to access the same memory.

OpenMP uses a set of compiler directives and API function calls.
#pragma omp parallel ———— Starts a parallel region

ISOMP PARALLEL
PRINT *, “Hello from process: ”, printf(“Hello from process: %d\n”,

OMP_GET_THREAD_NUM() omp_get thread _num());
ISOMP END PARALLEL }

Compatible compilers will use “-fopenmp” or similar to enable OpenMP
parallelization. The OpenMP directives are ignored if the compiler does not

support them.

(¢) Brookhaven (TP g

National Laboratory

OpenMP for GPU Computing

« To enable GPU computing, OpenMP uses the “target offloading” model.

 When the target region is encountered, the main thread will attempt to initiate
the computation on the target device, e.g., the GPU in this case.

« Data will be moved to/from the GPU as needed/specified by the user.

 Two ways to do this:
« Explicit data management SMP SMP
 Managed memory SMP SMP

DRAM M GPU memory

GPU

OpenMP is a specification; actual support and implementations for different
GPU architectures depend on the compilers.

CPU

National Laboratory —

(¢)Brockhaver (P gEA*

A simple example

int main(int argc, char* argv[]){
int N=10000;
float x=1.0;
float y=2.0;
float out[N];

#pragma omp target teams

map(to:x,y) map(from:out[0:N])
for(int n=0;n<N;n++) {
out[n]=x*y;
}

return O;

}

target — indicates the code block below
will be executed on the target device.

teams — indicates there will be a league of
teams doing the work

— the teams will share the work
(usually outer loop iterations)

— the work will be shared by
parallel threads

How teams/distribute/parallel map to the
GPU architectures depends on the
compiler

map copies the data associated with the

Can compile with gcc for NVIDIA GPUs:

g++ -fopenmp -omptargets=nvptx64sm_75-nvidia-linux

variables to or from the target memory.

(¢) Brookhaven (TP g

National Laboratory

Comparison with CUDA - Kernels

OpenMP CUDA
« GPU kernels can be generated
|mp_I|C|tIfy by the compiler inside target « GPU kernel functions need to be
~region for inline functions. Sxplicit![y defined with __global
main: ecorator

9, #omp target teams distribute parallel for
9, Generating Tesla and Multicore code
Generating "nvkernel_main_F1L9 1" GPU kernel
11, Loop parallelized across teams and threads, schedule(static)

 There is no additional kernel launch

call. Kernel launch is implicit inside the « Kernel launch with
targebt region with default thread/teams
numbers.

* Needt ify # of
« Can also write specific kernel functions th?eeadglggl?saltﬁlrea%s explicitly.

with #pragma omp declare target « Note that you need to have the device
 Can specify #of teams/# of threads by Eointers ellnleSS you use UVM) in the

num_teams and thread_limit ernel calls.

#pragma omp target teams distribute parallel
for num_teams(32) thread_Ilimit(128)

(¢) Brookhaven (TP g

National Laboratory

Comparison with CUDA — Data Management

OpenMP

K

Brookhaven

National Laboratory

OpenMP uses the “map” clauses to
manage data between CPU and GPU

#pragma omp target map (tofrom:x)
to/from is from the host perspective

Some data are copied implicitly at the
kernel launch, such as scalars
by default)

Can use unstructured data clauses for
more flexibility

Also supports API calls, e.g.,
omp_target alloc, etc.

o
D sxesne
) EEEEEEEEE
\(y| sy

CUDA

Need to allocate host and device
memory explicitly

Need to be careful about which
pointers to use, host or device

_ copies data to/from the
device

Unified Virtual Memory/Managed
Memory greatly simplifies data
management with

! allocator for both
the host and device memory.

CUDA runtime page faults retrieve
device/host data as necessary

The Grid C++ QCD Library

e Grid[1] is a C++ library for lattice QCD

* Initially designed for SIMD architectures with long
SIMD length (Intel Knights Landing, Skylake, etc.).

* Arranges the data layout as if the lattice is divided
into virtual “sub-lattices”.

* Each sub-lattice uses one SIMD lane.
 Same data layout can be mapped to GPU architectures
e SIMD lanes on CPUs map to GPU threads

* Requires some data manipulation under the hood

[1] P. Boyle et al., arXiv:1512.0348, https://github.com/paboyle/Grid

L:.\Brookhaven‘ E\(\g\\)F’ SCEE

National Laboratory

. > II\I/I ENENENEEEN e

SIMD lanes

Data mapping on SIMD architecture

A thread block

.—»w/;/. NN EEEEEEEE

Data mapping on SIMT architecture

Grid’s Performance Portable Design

« Header file with macros to encapsulate architecture-dependent implementations
« Currently the main Grid repo supports CUDA, SYCL and HIP

GRID NVCC
accelerator __host = device
accelerator inline host =~ device inline
accelerator for (..) { //CUDA kernel}
(GRID OMP)
strong inline __attribute ((always inline)) inline
accelerator
accelerator inline strong inline
accelerator for(..) thread for(..)

« Common MemoryManager API for dynamic memory allocation on different architectures

*MemoryManager: :AcceleratorAllocate(size t bytes){

ptr = (void *) [acceleratorAllocDevice(bytesﬂ; — Archltecture-.spec;lflc
} implementations

L? Brookhaven E\(C\\)F’ SrEme

National Laboratory PROJECT

OpenMP Offloading in Grid

New macro definitions for accelerator for, accelerator_inline etc.

#elif defined (OMPTARGET)
#define strong inline
accelerator for(iterator,num,nsimd, ...) \
{ \
("omp target teams distribute parallel for”) \ naked for(iterator, num,
VA ARGS__ }); \
})

{

MemoryManager with OpenMP APIs

*acceleratorAllocDevice(size t bytes) {
devc = omp get default device();
ptr = (*) omp target alloc(bytes, devc);
}

Unified Shared/Virtual Memory for Comparison

OMPTARGET MANAGED
(ptr == (_Tp *) NULL) err = ((void **)&ptr,bytes);

-ED

L",‘Brookhaven' E\(\g\\)F’ SCEE

National Laboratory

GridMini

www.github.com/meifeng/GridMini

A substantially reduced version of Grid for
easy experimentation with different
programming models.

Retains same Grid structure: data
structures/types, data layout, aligned
allocators, macros, ...

Only keeps the high-level components
necessary for the benchmarks.

SU(3)XSU(3) benchmark: STREAM-like
memory bandwidth test

Important as LQCD is bandwidth bound. Also
data movement is the major challenge when
porting to GPUs.

Useful in the early days of OpenMP
offloading experiments as the compilers were
being developed.

i
\\ EXASCALE
‘ j|— coveTnG
\ PROJECT

L? Brookhaven

National Laboratory

Benchmark_su3

LatticeColourMatrix
LatticeColourMatrix
LatticeColourMatrix

(&Grid);
(&Grid);
(&Grid);

//Arrays of SU(3)
//Arrays of SU(3)
//Arrays of SU(3)

start= ();
for(1=0;i<Nloop;i++){
Z=X*Y;
}
stop= ()i
time=(stop-start)/Nloop*1000.0;

bytes=3*vol*Nc*Nc*sizeof (Complex);
flops=Nc*Nc*(6+8+8)*vol;
bandwidth=bytes/time; //GB/s
Gflops=flops/time; //0.9 flops/byte SP

Summary of Current Status

©

Porting full Grid to OpenMP offloading is in progress.

e Added OpenMP target backend for both the compute and data management.

« Haven’t added SIMT layout support to the OpenMP target backend.

* Code compiles and runs on NVIDIA and Intel GPUs using LLVM-based compilers. There are still some

linking issues on AMD GPUs (stack size overflow).
Starting from the miniapp laid a good roadmap for porting.
. GridMini runs on NVIDIA, AMD and Intel GPUs, and works with different compilers.

However, moving from GridMini to Grid still exposes many issues:

 Layered abstraction makes it hard to identify bugs with data movement => often the main point of
failure.

Compilers are constantly evolving:
e Good - bugs get fixed quickly;

Performance can also depend on runtime parameters (# of threads/block, etc.)
* important to perform manual/auto tuning.

Brookhaven E=(C)P g

National Laboratory

14

GridMini Performance on NVIDIA GPU

o llvm map: explicit data mapping with
OpenMP offloading with malloc as the
memory allocator

e llvm managed: OpenMP offloading with
cudaMallocManaged as memory allocator

e llvm map+managed: explicit data
mapping with cudaMallocManaged as
memory allocator

e nvcc managed: CUDA implementation
with cudaMallocManaged (same data
layout; no CUDA-specific optimizations)

e Compiler Version:
o clang++: llvm/12.0.0-git_20210117
o nvcc: CUDA 11
e Hardware platform: Cori-GPU with
NVIDIA V100 GPU

B Ivmmap [llvm managed llvm map+managed [nvcc managed

800

600

400

GB/s

200

O 8 II‘

6 P E & X PP PO OO OO O ®

)(Q XQ)(Q)(Q)(Q XQ)(Q)(Q XQ)(Q)(Q)(Q XQ XQ)(Q)(Q
W Y S S
N N > (1/. (‘o. N (1/. - /\. N L\ (1,. . ™ (o. /\.

Bak, Seonmyeong, et al. "OpenMP application experiences: porting to accelerated
nodes." Parallel Computing 109 (2022): 102856.

Chapman, Barbara, et al. "Outcomes of OpenMP Hackathon: OpenMP Application
Experiences with the Offloading Model (Part 1&ll)." International Workshop on OpenMP.

Springer, Cham, 2021.

L:.\ Brookhaven

National Laboratory

o
\\ EXASCALE
) COMPUTING
\ PROJECT
.

Grid OpenMP offloading Performance

o Choice of # of threads/block affects e OpenMP and CUDA have different optimal
performance. values

OpenMP Bandwidth on NVIDIA V100 CUDA Bandwidth on NVIDIA V100

600 600
= @
O 400 @ 400
5 =
5 200 2200
g Z
: S
M 0 m

1 2 4 8 16 32 64 128 256 512 768 1024 1) 4 8 16 32 64 128 256

Threads/Block

: # Threads/Block
L=24, memory footprint = 1.43E+08 bytes

Compilers: Clang-15.0.0 + CUDA-11.4

~~ Brookhaven D seme
L' National Laborataory E\(\g }P FRoISCT 16

GridMini Performance on AMD GPU

OpenMP Bandwidth on AMD Radeon Pro VII

400

300

3 200
@)

100

0

1.77E+06 2.83E+07 1.43E+08 4.53E+08 1.11E+09 2.29E+09

Bytes

e Compiler Version:
o Rocm4.5
e Hardware platform: BNL lambdal with AMD
Raedon Pro VIl GPU and AMD 24-core Ryzen

Threadripper 3960X CPU
~ = ’;\\ EXASCALE
(© Brogkhaver EyCVP e

Dependence on # of Threads/Block
400

300

200

GB/s

100

0

8 16 32 64 128 256 512 1024

Threads/Block

L=24, memory footprint= 1.43E+08 bytes
Best performance is with 256 threads/block

Conclusions and Outlook

« Compiler support for OpenMP target offloading has improved
greatly in the past few years.

 However, getting OpenMP offloading to work with complicated
C++ codes such as Grid is still quite challenging.
Grid has exposed many issues with the current compilers.
We have worked very closely with the LLVM compiler developers to
identify and fix these issues.

« Debugging, testing and performance tuning on Frontier and
Aurora hardware is in progress.

« TODO: Comparison with CUDA/HIP/SYCL implementations.

¢ Brookhaven =g
I kf National Laboratory E\(C)P PPPPPPP

18

Acknowledgments

« This work was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy'’s Office of Science and National Nuclear Security
Administration, responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s exascale computing

imperative.

National Laboratory —

I (¢) Brookhaven (= e

