Precision Determination of Baryon Masses including Isospin-breaking

Alexander Segner Andreas Risch, Hartmut Wittig

July 31, 2023

- Increased interest in high-precision observables
- Discrepancy between theory and experiment on $a_{\mu} = \frac{(g-2)_{\mu}}{2}$
- Theoretical uncertainty is dominated by QCD \rightarrow Strongly influenced by the uncertainty of the lattice scale
- Scale setting on CLS ensembles currently done using f_{π} and f_{K}^{1} \rightarrow Difficult to determine IB corrections² reliably
 - \rightarrow Use baryon masses instead

¹Bruno et al. 2017, Phys. Rev. D 95 no. 7, p. 074504.

²Carrasco et al. 2015, *Phys. Rev. D* **91** no. 7, p. 074506.

Operator Basis

- Construction based on isospin-symmetric QCD following a procedure introduced by the *Lattice Hadron Physics Collaboration*³
- Classification by symmetries in flavor and spin (and parity eigenvalues)
- Example for symmetric spin and flavor indices (e.g. $\Omega_{ijk}^- = s_i s_j s_k$, $\Delta_{ijk}^+ = \frac{1}{\sqrt{3}} (u_i u_j d_k + u_i d_j u_k + d_i u_j u_k)$, etc.) (Operators in Dirac-Pauli basis)

Embedding	S_z	gerade (even)	ungerade (odd)		
1	$\frac{3}{2}$	Ω_{111}	$\sqrt{3}\Omega_{113}$		
1	$\frac{\overline{1}}{2}$	$\sqrt{3}\Omega_{112}$	$\Omega_{114} + 2\Omega_{123}$		
1	$-\frac{1}{2}$	$\sqrt{3}\Omega_{122}$	$2\Omega_{124} + \Omega_{223}$		
1	$-\frac{\bar{3}}{2}$	Ω_{222}	$\sqrt{3}\Omega_{224}$		
2	3/2	$\sqrt{3}\Omega_{133}$	Ω_{333}		
2	$\frac{\overline{1}}{2}$	$2\Omega_{134} + \Omega_{233}$	$\sqrt{3}\Omega_{334}$		
2	$-\frac{1}{2}$	$\Omega_{144} + 2\Omega_{234}$	$\sqrt{3}\Omega_{344}$		
2	$-\frac{3}{2}$	$\sqrt{3}\Omega_{244}$	Ω_{444}		
H irrep for symmetric spin and flavor indices					

³Basak et al. 2005, *Phys. Rev. D* 72, p. 074501.

Simulation Setup

• Setup:

- $\mathcal{O}(a)$ -improved Wilson fermions
- Tree-level Lüscher–Weisz gauge action
- Interpolators as described before
- $\, \bullet \,$ Wuppertal smeared point sources with smearing radius $\sim 0.5 \, \text{fm}$
- APE smeared gauge links
- Correlation functions averaged over
 - Different S_z
 - Forward propagator and backwards parity partner

e.g. From previous table $\Omega_{111},\,\sqrt{3}\Omega_{112},\,\sqrt{3}\Omega_{122},\,\Omega_{222}$, and the time reversed $\Omega_{333},\,\sqrt{3}\Omega_{334},\,\sqrt{3}\Omega_{344},\,\Omega_{444}$ can be combined

- Have access to correlator matrices allowing for GEVP
 - $\rightarrow\,$ Found that one operator is much less noisy than the others for each state
 - $\rightarrow\,$ GEVP mostly projects on least noisy correlator
 - $\rightarrow\,$ Focus on correlation function of operator that gives the best signal

QCD+QED vs. QCD_{iso}

- Method based on approach introduced by the *RM123* collaboration^{4,5}
- Consider a QCD+QED action S with parameters:

$$\varepsilon = \left(\beta, e^2, m_u, m_d, m_s\right)$$

• Expand around isosymmetric action $S^{(0)}$ with parameters

$$\varepsilon^{(0)} = \left(\beta^{(0)}, 0, m_{ud}^{(0)}, m_{ud}^{(0)}, m_s^{(0)}\right)$$

• Dividing S into three parts, write

$$S[U, A, \psi, \bar{\psi}] = S_g[U] + S_\gamma[A] + S_q[U, A, \psi, \bar{\psi}]$$

QED_L prescription⁶ in Coulomb gauge

⁴Divitiis et al. 2012, JHEP **04**, p. 124.

⁵Divitiis et al. 2013, *Phys. Rev. D* 87 no. 11, p. 114505.

⁶Hayakawa and Uno 2008, Prog. Theor. Phys. **120**, pp. 413–441.

Perturbative Expansion – Expectation Values

Expand expectation values

$$\langle \mathcal{O} \rangle^{\varepsilon} = \langle \mathcal{O} \rangle^{\varepsilon^{(0)}} + \sum_{\varepsilon_i \in \varepsilon} \underbrace{\left(\varepsilon_i - \varepsilon_i^{(0)}\right)}_{=:\Delta \varepsilon_i} \frac{\partial \langle \mathcal{O} \rangle^{\varepsilon}}{\partial \varepsilon_i} \bigg|_{\varepsilon = \varepsilon^{(0)}} + O(\Delta \varepsilon^2)$$

$$\varepsilon = \left(\beta, e^2, m_u, m_d, m_s\right) \\ \varepsilon^{(0)} = \left(\beta, 0, m_{ud}^{(0)}, m_{ud}^{(0)}, m_s^{(0)}\right) \right\} \Delta \varepsilon = \left(0, e^2, \Delta m_u, \Delta m_d, \Delta m_s\right)$$

Baryon correlation function:

Perturbative Expansion – Spectroscopy

• Correlation functions asymptotically behave like

$$C(t) = ce^{-mt}$$

• Expansion in isospin breaking parameters $(\Delta \varepsilon_i := \varepsilon_i - \varepsilon_i^{(0)})$

$$\rightarrow C(t) = c^{(0)} e^{-m^{(0)}t}$$

$$+ \sum_{i} \Delta \varepsilon_i \Big(c_i^{(1)} - c^{(0)} m_i^{(1)} t \Big) e^{-m^{(0)}t}$$

$$+ \mathcal{O}(\Delta \varepsilon^2)$$

 \rightarrow Can define effective mass at first order via

$$(am_{\text{eff}})_{\Delta\varepsilon_{i}}^{(1)} := -a\frac{\mathrm{d}}{\mathrm{d}t}\frac{C_{i}^{(1)}(t)}{C^{(0)}(t)} = \frac{C_{i}^{(1)}(t)}{C^{(0)}(t)} - \frac{C_{i}^{(1)}(t+a)}{C^{(0)}(t+a)}$$

• $\Delta \varepsilon_i$ can be set by matching different average multiplet masses and mass splittings

Model Averaging

- Choice of fit interval and fit function is subjective and to some degree ambiguous
 → Use model average
- Fit models (combination of fit function and -interval) are averaged with weights from Akaike information criterion^{7,8,9} (AIC) with penalty term

$$\operatorname{pr}(M|D) \propto \exp\left(-\frac{\chi^2}{2} - k - n\right)$$

where k: number of fit parameters, n: number of data points **not** considered in fit

⁷Akaike 1998.

⁸Jay and Neil 2021, *Phys. Rev. D* 103, p. 114502.

⁹Neil and Sitison 2022.

• Fit parameters a_0 can be estimated from model fit

$$\langle a_0 \rangle = \sum_i \left< a_0 \right>_{M_i} \mathrm{pr}(M_i | D)$$

• Covariance matrix given by

$$C = \sum_{i} C_{i} \operatorname{pr}(M_{i}|D) + \sum_{i} \langle a_{0} \rangle_{M_{i}} \langle a_{0} \rangle_{M_{i}}^{T} \operatorname{pr}(M_{i}|D) - \left(\sum_{i} \langle a_{0} \rangle_{M_{i}} \operatorname{pr}(M_{i}|D)\right) \left(\sum_{i} \langle a_{0} \rangle_{M_{i}}^{T} \operatorname{pr}(M_{i}|D)\right)$$

(statistic and systematic contributions)

• Systematic contributions added to Jackknife/Bootstrap distribution as Gaussian noise

Model Averaging Example Isospin-Symmetric

- Constant fits for single-state ansatz
- 2-state fit function $am_{\rm eff}(t) = m + \gamma e^{-\Delta M t}$
- At lower t_{\min} , pr(M|D) drops rapidly

2-state fit function

 $am_{\rm eff}(t) = m + (\alpha - \beta t)e^{-\Delta M^{(0)}t}$

- Data much more noisy in the region where one expects a plateau
- Model average helps with selection of fit ranges and provides estimate for uncertainty from choice of model/fit range
- Stable results from 2-state and single-state fits

Relative Precision of Baryon Masses

Relative uncertainties on asymptotic masses from AIC averages in the isospin-symmetric theory $% \left({{{\rm{AIC}}} \right)_{\rm{AIC}}} \right)$

Ensemble	N	Λ	Σ	Ξ	Ω
D450	0.49%	0.39%	0.80%	0.36%	0.28%
N200	1.46%	0.37%	0.40%	0.22%	0.33%
N203	0.35%	0.27%	0.28%	0.22%	0.44%
N451	1.20%	0.16%	0.16%	0.32%	0.23%
N452	0.80%	0.50%	0.74%	0.41%	1.14%

Relative uncertainties on the isospin-breaking corrections to the asymptotic mass for most promising candidates for scale-setting

Encomblo	Ξ ⁰		Ξ-			Ω^{-}		
Liiseindie	e^2	Δm_u	Δm_s	e^2	Δm_d	Δm_s	e^2	Δm_s
D450	1.6%	2.2%	0.4%	0.8%	2.2%	0.4%	1.2%	1.2%
N200	1.5%	1.9%	0.7%	1.1%	1.9%	0.7%	1.3%	1.4%
N203	0.9%	1.2%	0.7%	0.7%	1.2%	0.7%	1.2%	1.2%
N451	1.2%	1.2%	1.2%	0.7%	1.2%	1.2%	0.9%	1.0%
N452	1.0%	0.9%	0.6%	0.8%	0.9%	0.6%	1.6%	2.4%

- All error estimates are purely statistical and exclude IB corrections to the sea-quark sector
- IB contributions are multiplied by expansion coefficients of $\mathcal{O}(10^{-3})$ \rightarrow uncertainties likely negligible

- We compute masses and their isospin-breaking corrections for the full baryon octet and decuplet
- We find 0.2% to 0.5% statistical precision on all ensembles thus far for the Ξ baryon and on most ensembles for the Ω for the pure QCD-contribution
- $\mathcal{O}(1\%)$ precision in IB corrections likely to be negligible for the full QCD+QED result
 - \rightarrow Ignores sea-quark interactions which might increase error
- Ξ and Ω promising candidates for setting the scale on CLS ensembles with isospin-breaking corrections