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Motivation

Entanglement in quantum systems is a broad subject, with applications
in many different areas of physics, such as:

o Quantum information
o Condensed matter and CF T
o AdS/CF T and quantum gravity
o Gauge theories (see talk by R. Amorosso, Thu 4.40 pm)

However analytical and numerical results are still limited to simple,
highly symmetric systems.

Non-equilibrium techniques can provide an efficient tool to calculate
entanglement-related quantities [Alba; 2016][D’Emidio; 2019][Zhao et
al.; 2021][Song et al.; 2023].
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Entanglement in QFT
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S(A) = − Tr{ρA log ρA} Sn = 1
1 − n

log Tr ρn
A
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Replica trick

A common way to calculate Rényi entropies and other entanglement
measurements is to exploit the replica trick [Calabrese, Cardy; 2004]

Sn = 1
1 − n

log Zn

Zn

Image taken from [Cardy et. al.; 2007]. Image adapted from [Alba; 2016].
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Entropic c-function

Problem: Rényi entropies are always UV divergent.
A common regularization consists in taking the derivative with respect
to the length of the cut, that defines the so called entropic c-function,
which is UV finite and encodes all the universal information contained in
the Rényi entropies.

Cn = lD−1

|∂A|
∂Sn

∂l

Also ∂Sn/∂l can be written in terms of a ratio of partition functions.
Using a lattice regularization

∂Sn

∂l
' 1

1 − n

1
a

log Zn(l + a)
Zn(l)

In recent years the Turin group has exploited Jarzynski’s equality
[Jarzynski; 1996] to perform high-precision lattice calculations of
quantities involving ratios of partition functions [Caselle et. al.;
2016][Caselle et. al.; 2018][Francesconi et. al.; 2020][Caselle et. al.;
2022] (see talk by A. Nada, Mon 2.30 pm).
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Jarzinski’s theorem

Jarzynski’s theorem [Jarzynski;
1996] is an exact result that
connects averages of
out-of-equilibrium trajectories of
a statistical system to
equilibrium free energies.

The theorem is valid both for
real and Monte Carlo time
evolution.

Consider the one parameter
evolution Hλ=0 → Hλ=1.
Jarzynki’s theorem states that〈

exp
(

−
∫

βδW

)〉
= Zλ=1

Zλ=0

λ = 0

λ = 1
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Our algorithm

∂Sn

∂l
' 1

1 − n

1
a

log Zn(l + a)
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Theoretical results for 2D CFTs

The theoretical prediction for a CFT on a cylinder of spatial length L is
(c = 1

2 for the Ising model)

C2(x) = c

8 cos(πx) x = l

L

This result holds in the scaling limit L, l � 1, while for finite sizes
scaling corrections can be relevant.

The general theory of unusual corrections to scaling of the entanglement
entropy was developed in [Calabrese, Cardy; 2010].

In the case of the D = 2 Ising model one expects

C2(x) = CCFT
2 (x) + k

2L
cot(πx)
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Benchmark: Ising 2D
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Some models in D = 3

For the D = 3 Ising model no analytical solution is known and only few
numerical studies are present in literature [Inglis, Melko; 2013]
[Kulchytskyy et. al.; 2019].
We compared our numerical results at the critical point with three
different models:

- the 2D function
- a function proposed in a study of resonance-valence-bond (RVB) dimers

[Stéphan et. al.; 2012]
- a function derived in [Chen et. al.; 2015] in a holographic setup using the

Ryu-Takayanagi formula [Ryu, Takayanagi; 2006]

S2;2D(x; c, k) = c log(sin(πx)) + k

S2;RV B(x; c, k) = −2c log
{

η(τ)2

θ3(2τ)θ3(τ/2)
θ3(2xτ)θ3(2(1 − x)τ)
η(2xτ)η(2(1 − x)τ)

}
+ k

S2;AdS(x; c, k) = cχ(x)− 1
3

{∫ 1

0

dy

y2

(
1√

P (χ(x), y)
− 1

)
− 1

}
+ k
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Results for Ising 3D
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Conclusions and future prospects

Our data for the 2D Ising model are in perfect agreement with the CFT
prediction.

In both cases we obtained precise results in a small amount of time
(< 800 CPU hours for the largest lattice size both in D = 2, 3).

This algorithm can be generalized to arbitrary spin models and gauge
theories.

Future work:
Exploit the duality properties of the 3D Ising model to study the
entanglement content of the Z2 gauge theory.

Extension to non-Abelian gauge theories? [Buividovich, Polikarpov;
2008][Itou et. al ; 2015][Rabenstein et. al ; 2018]
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Some numerical details

For our simulations we adapted the code found in [Komura, Okabe;
2014], implementing the replica space and Jarzynski’s algorithm.

The code is written in CUDA C to achieve high parallelization.

We obtained precise results in a small amount of time: data for L = 128
required approximatively 750 hours on on the CINECA Marconi100
accelerated cluster, based on IBM Power9 architecture and Volta
NVIDIA GPUs.

Data for L = 24, 48 required respectively ∼ 270, 620 hours on on the
CINECA Marconi100 accelerated cluster.
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Benchmarks of the algorithm: 2D
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Benchmarks of the algorithm: 3D
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Duality transformation in 2D
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