# Entanglement entropy from non-equilibrium lattice simulations

### Andrea Bulgarelli

### Università degli Studi di Torino and Istituto Nazionale di Fisica Nucleare

4 August 2023 The 40th International Symposium on Lattice Field Theory

Based on: A. Bulgarelli and M. Panero JHEP 06 (2023) 030





### Motivation

#### Motivation

Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3D

- Entanglement in quantum systems is a broad subject, with applications in many different areas of physics, such as:
  - Quantum information
  - o Condensed matter and CFT
  - o AdS/CFT and quantum gravity
  - o Gauge theories (see talk by R. Amorosso, Thu 4.40 pm)
  - However analytical and numerical results are still limited to simple, highly symmetric systems.
  - Non-equilibrium techniques can provide an efficient tool to calculate entanglement-related quantities [Alba; 2016][D'Emidio; 2019][Zhao et al.; 2021][Song et al.; 2023].

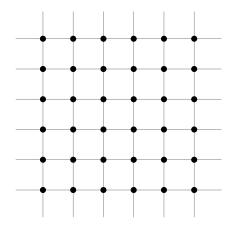
#### Motivation

### Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3D



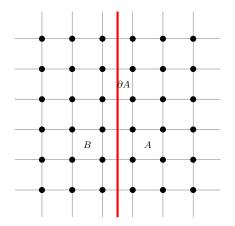
#### Motivation

### Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3D



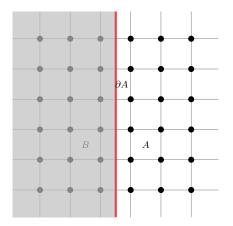
#### Motivation

### Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3D



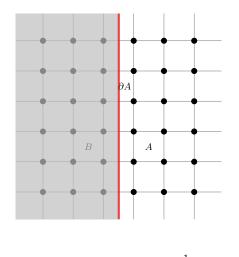
#### Motivation

### Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3D



$$S(A) = -\operatorname{Tr}\{\rho_A \log \rho_A\} \qquad S_n = \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n$$

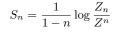
### Replica trick

#### Motivation

#### Entanglement in QFT

- Nonequilibrium simulations
- Ising 2D
- Jeing 30
- Conclusions and future prospects

 A common way to calculate Rényi entropies and other entanglement measurements is to exploit the replica trick [Calabrese, Cardy; 2004]



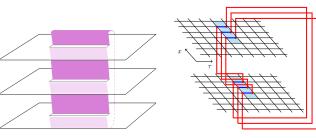


Image taken from [Cardy et. al.; 2007].

Image adapted from [Alba; 2016].

### Entropic c-function

#### Motivation

### Entanglement in QFT

- Nonequilibrium simulations
- Ising 2D

Ising 3D

Conclusions and future prospects

- Problem: Rényi entropies are always UV divergent.
- A common regularization consists in taking the derivative with respect to the length of the cut, that defines the so called entropic c-function, which is UV finite and encodes all the universal information contained in the Rényi entropies.

$$C_n = \frac{l^{D-1}}{|\partial A|} \frac{\partial S_n}{\partial l}$$

• Also  $\partial S_n/\partial l$  can be written in terms of a ratio of partition functions. Using a lattice regularization

$$\frac{\partial S_n}{\partial l} \simeq \frac{1}{1-n} \frac{1}{a} \log \frac{Z_n(l+a)}{Z_n(l)}$$

 In recent years the Turin group has exploited Jarzynski's equality [Jarzynski; 1996] to perform high-precision lattice calculations of quantities involving ratios of partition functions [Caselle et. al.; 2016][Caselle et. al.; 2018][Francesconi et. al.; 2020][Caselle et. al.; 2022] (see talk by A. Nada, Mon 2.30 pm).

### Jarzinski's theorem

#### Motivation

Entanglement in QFT

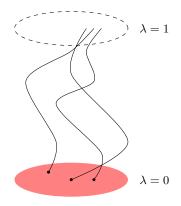
Nonequilibrium simulations

Ising 2D

1-1-- 20

- Jarzynski's theorem [Jarzynski; 1996] is an exact result that connects averages of out-of-equilibrium trajectories of a statistical system to equilibrium free energies.
- The theorem is valid both for real and Monte Carlo time evolution.
- Consider the one parameter evolution  $H_{\lambda=0} \rightarrow H_{\lambda=1}$ . Jarzynki's theorem states that

$$\left\langle \exp\left(-\int\beta\delta W\right)\right\rangle = \frac{Z_{\lambda=1}}{Z_{\lambda=0}}$$



### Our algorithm

#### Motivation

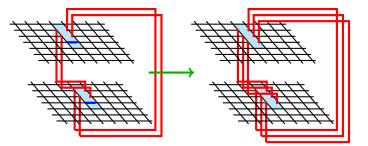
Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3D





#### Motivation

Entanglement in QFT

Nonequilibrium simulations

### Ising 2D

Ising 3D

Conclusions and future prospects • The theoretical prediction for a CFT on a cylinder of spatial length L is  $(c = \frac{1}{2}$  for the Ising model)

$$C_2(x) = \frac{c}{8}\cos(\pi x) \qquad \qquad x = \frac{l}{L}$$

- This result holds in the scaling limit  $L,l\gg 1,$  while for finite sizes scaling corrections can be relevant.
- The general theory of unusual corrections to scaling of the entanglement entropy was developed in [Calabrese, Cardy; 2010].
- $\bullet\,$  In the case of the D=2 Ising model one expects

$$C_2(x) = C_2^{\mathsf{CFT}}(x) + \frac{k}{2L}\cot(\pi x)$$

### Benchmark: Ising 2D

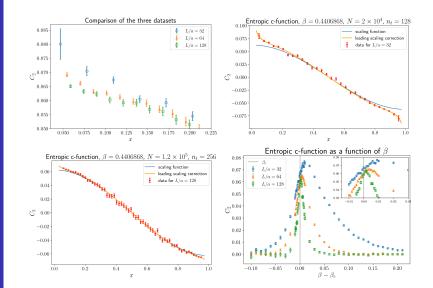
#### Motivation



Nonequilibriun simulation

### Ising 2D

Ising 3D



### Some models in D = 3

#### Motivation

Entanglement in QFT

Nonequilibrium simulations

Ising 2D

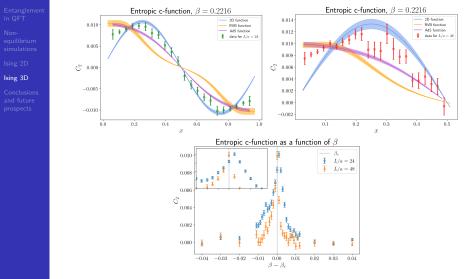
#### Ising 3D

- For the D = 3 Ising model no analytical solution is known and only few numerical studies are present in literature [Inglis, Melko; 2013] [Kulchytskyy et. al.; 2019].
- We compared our numerical results at the critical point with three different models:
  - the  $2D\ {\rm function}$
  - a function proposed in a study of resonance-valence-bond (RVB) dimers [Stéphan *et. al.*; 2012]
  - a function derived in [Chen *et. al.*; 2015] in a holographic setup using the Ryu-Takayanagi formula [Ryu, Takayanagi; 2006]

$$\begin{split} S_{2;2D}(x;c,k) &= c \log(\sin(\pi x)) + k \\ S_{2;RVB}(x;c,k) &= -2c \log\left\{\frac{\eta(\tau)^2}{\theta_3(2\tau)\theta_3(\tau/2)} \frac{\theta_3(2x\tau)\theta_3(2(1-x)\tau)}{\eta(2x\tau)\eta(2(1-x)\tau)}\right\} + k \\ S_{2;AdS}(x;c,k) &= c\chi(x)^{-\frac{1}{3}} \left\{\int_0^1 \frac{\mathrm{d}y}{y^2} \left(\frac{1}{\sqrt{P(\chi(x),y)}} - 1\right) - 1\right\} + k \end{split}$$

### Results for Ising 3D

#### Motivation



#### Motivation

Entanglement in QFT

Nonequilibrium simulations

Ising 2D

Ising 3

Conclusions and future prospects

- Our data for the 2D Ising model are in perfect agreement with the CFT prediction.
- In both cases we obtained precise results in a small amount of time (< 800 CPU hours for the largest lattice size both in D = 2, 3).
- This algorithm can be generalized to arbitrary spin models and gauge theories.

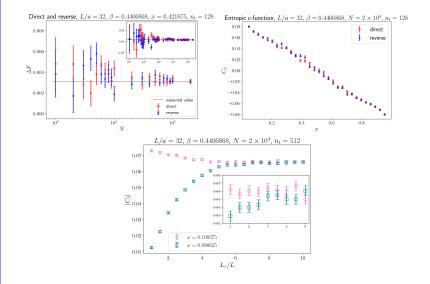
### Future work:

- Exploit the duality properties of the 3D Ising model to study the entanglement content of the  $\mathbb{Z}_2$  gauge theory.
- Extension to non-Abelian gauge theories? [Buividovich, Polikarpov; 2008][Itou *et. al*; 2015][Rabenstein *et. al*; 2018]

## Appendix

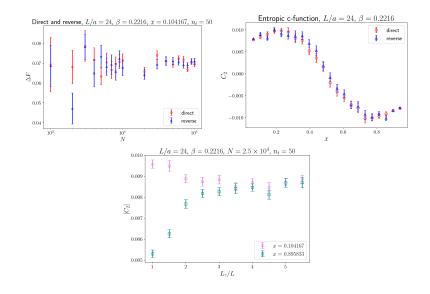
- For our simulations we adapted the code found in [Komura, Okabe; 2014], implementing the replica space and Jarzynski's algorithm.
- The code is written in CUDA C to achieve high parallelization.
- We obtained precise results in a small amount of time: data for L=128 required approximatively 750 hours on on the CINECA Marconi100 accelerated cluster, based on IBM Power9 architecture and Volta NVIDIA GPUs.
- Data for L=24,48 required respectively  $\sim 270,620$  hours on on the CINECA Marconi100 accelerated cluster.

### Benchmarks of the algorithm: 2D



Andrea Bulgarelli (UniTo & INFN)

### Benchmarks of the algorithm: 3D



### Duality transformation in 2D

