Progresses on high-temperature QCD: Equation of State and energy-momentum tensor

M. Bresciani, M. Dalla Brida, L. Giusti, M. Pepe

University of Milano Bicocca INFN Milano Bicocca

02/08/2023

1. Finite temperature QCD: a tool for NP renormalization

- 2. Renormalization of the energy momentum tensor
- 3. Equation of State
- 4. Conclusions & outlook

QCD in a moving frame

Hypercubic lattice of size $L_0 \times L^3$

• Shifted and twisted boundary conditions

$$egin{aligned} U_{\mu}(x_{0}+L_{0},m{x}) &= U_{\mu}(x_{0},m{x}-L_{0}m{\xi}) \ \psi(x_{0}+L_{0},m{x}) &= -e^{i heta_{0}}\,\psi(x_{0},m{x}-L_{0}m{\xi}) \ ar{\psi}(x_{0}+L_{0},m{x}) &= -e^{-i heta_{0}}\,ar{\psi}(x_{0},m{x}-L_{0}m{\xi}) \end{aligned}$$

- $\boldsymbol{\xi} \rightarrow$ euclidean boost parameter, 3d vector [Giusti, Meyer, JHEP 01 (2013), 140] $\theta_0 \rightarrow$ twist phase, imaginary chemical potential [Dalla Brida, Giusti, Pepe, JHEP 04 (2020) 043]
- $N_f = 3$ massless $\mathcal{O}(a)$ -improved Wilson fermions

Finite temperature QCD: a tool for NP renormalization

• Ward Identity for Z_V

$$Z_V \langle V^l_\mu \rangle_{\boldsymbol{\xi}, \theta_0} = \langle V^c_\mu \rangle_{\boldsymbol{\xi}, \theta_0}$$

• Limit to zero temperature

$$Z_V\left(g_0^2, \frac{a}{L_0}\right) = Z_V(g_0^2) + C_1 \cdot \left(\frac{a}{L_0}\right)^2 + C_2 \cdot (a\Lambda_{\rm QCD})\left(\frac{a}{L_0}\right) + C_3 \cdot (a\Lambda_{\rm QCD})^2 + \dots$$

[Bresciani, Dalla Brida, Giusti, Pepe, Rapuano, PLB 835 (2022), 137579]

0.90

0.85

Ň

0.06

 $\beta = 11.5000$

 $\beta = 8.8727$ $\beta = 7.6042$

 $\beta = 6.6096$

 $\beta = 6.0433$

Renormalization of the energy momentum tensor

• WIs for the non-singlet energy momentum tensor

$$\langle T_{0k}^{\{6\},R} \rangle_{\boldsymbol{\xi},\theta_0} = Z_G^{\{6\}} \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\theta_0} + Z_F^{\{6\}} \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\theta_0}$$

$$\langle T_{0k}^{R,\{6\}}\rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_0} = \boldsymbol{\xi}_k \langle T_{0j}^{R,\{3\}}\rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_0} \quad (j \neq k, \xi_j = 0)$$

[Dalla Brida, Giusti, Pepe, JHEP 04 (2020) 043]

• Compute at two values of θ_0 : θ_0^A , θ_0^B

$$\langle T_{0k} \rangle_{\boldsymbol{\xi}, \theta_0} = -\frac{\partial f_{\boldsymbol{\xi}, \theta_0}}{\partial \xi_k}$$

$$\frac{\partial f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}}}{\partial \xi_{k}} = \frac{\partial f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\partial \xi_{k}} + \frac{i}{L_{0}} \int_{\boldsymbol{\theta}_{0}^{A}}^{\boldsymbol{\theta}_{0}^{B}} d\boldsymbol{\theta}_{0} \frac{\partial}{\partial \xi_{k}} \langle V_{0} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}} \equiv \frac{\partial f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\partial \xi_{k}} - \mathcal{V}_{0,k}^{AB}$$

M. Bresciani, M. Dalla Brida, L. Giusti, M. Pepe

Renormalization of the energy momentum tensor

• WIs for the non-singlet energy momentum tensor

$$\langle T_{0k}^{\{6\},R} \rangle_{\boldsymbol{\xi},\theta_0} = Z_G^{\{6\}} \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\theta_0} + Z_F^{\{6\}} \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\theta_0}$$

$$\langle T_{0k}^{R,\{6\}}\rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_0} = \boldsymbol{\xi}_k \langle T_{0j}^{R,\{3\}}\rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_0} \quad (j \neq k, \xi_j = 0)$$

[Dalla Brida, Giusti, Pepe, JHEP 04 (2020) 043]

• Compute at two values of θ_0 : θ_0^A , θ_0^B

$$\begin{pmatrix} \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} \\ & & \\ \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} \end{pmatrix} \begin{pmatrix} Z_{G}^{\{6\}} \\ \\ \\ Z_{F}^{\{6\}} \end{pmatrix} = \begin{pmatrix} -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \boldsymbol{\xi}_{k}} \\ -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \boldsymbol{\xi}_{k}} + \mathcal{V}_{0,k}^{AB} \end{pmatrix} + \mathcal{O}(a^{2})$$

Integral over the mass

$$\begin{pmatrix} \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} \\ & & \\ \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} \end{pmatrix} \begin{pmatrix} Z_{G}^{\{6\}} \\ \\ \\ Z_{F}^{\{6\}} \end{pmatrix} = \begin{pmatrix} -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \boldsymbol{\xi}_{k}} \\ -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \boldsymbol{\xi}_{k}} + \mathcal{V}_{0,k}^{AB} \end{pmatrix} + \mathcal{O}(a^{2})$$

Integral over the mass

• YM free-energy computed as in [Giusti, Pepe, PRD 91 (2015), 114504]

$$\begin{pmatrix} \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} \\ & & \\ \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} \end{pmatrix} \begin{pmatrix} Z_{G}^{\{6\}} \\ \\ \\ Z_{F}^{\{6\}} \end{pmatrix} = \begin{pmatrix} -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \boldsymbol{\xi}_{k}} \\ -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \boldsymbol{\xi}_{k}} + \mathcal{V}_{0,k}^{AB} \end{pmatrix} + \mathcal{O}(a^{2})$$

Integral over θ

One-point functions of the tensor

$$\begin{pmatrix} \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}} \\ & & \\ \langle T_{0k}^{G,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} & \langle T_{0k}^{F,\{6\}} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{B}} \end{pmatrix} \begin{pmatrix} Z_{G}^{\{6\}} \\ \\ \\ Z_{F}^{\{6\}} \end{pmatrix} = \begin{pmatrix} -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \xi_{k}} \\ -\frac{\Delta f_{\boldsymbol{\xi},\boldsymbol{\theta}_{0}^{A}}}{\Delta \xi_{k}} + \mathcal{V}_{0,k}^{AB} \end{pmatrix} + \mathcal{O}(a^{2})$$

One-point functions of the tensor

- $L_0/a = 6$
- $\beta = 8.8727$
- $\boldsymbol{\xi} = (1, 0, 0)$

preliminary			
$\theta_0^A = 0$			
$\langle T_{01}^{F,\{6\}}\rangle/T^4$	-6.343(9)	0.15%	
$\langle T_{01}^{G,\{6\}}\rangle/T^4$	-2.82(2)	0.85%	
$\langle T_{02}^{F,\{3\}}\rangle/T^4$	-6.85(1)	0.17%	
$\langle T^{G,\{3\}}_{02}\rangle/T^4$	-3.13(4)	1.20%	
$L/a = 288, n_{\rm trj} = 100$			

preliminary			
$ heta_0^B = 3\pi/10$			
$\langle T_{01}^{F,\{6\}} \rangle / T^4$	-4.053(9)	0.21%	
$\langle T^{G,\{6\}}_{01}\rangle/T^4$	-2.68(3)	1.00%	
$\langle T_{02}^{F,\{3\}}\rangle/T^4$	-4.38(1)	0.34%	
$\langle T^{G,\{3\}}_{02}\rangle/T^4$	-2.86(4)	1.53%	
$L/a = 96, \ n_{\rm trj} = 2000$			

Renormalization constants

Entropy density

- $N_f = 3$ massless $\mathcal{O}(a)$ -improved Wilson fermions
- $L_0/a = 6, \ \beta = 8.8727 \ (\sim 140 \text{ GeV})$
- $\boldsymbol{\xi} = (1, 0, 0), \, \theta_0 = 0$

$$\frac{s}{T^3} = \frac{1+\boldsymbol{\xi}^2}{\xi_k} \frac{1}{T^4} \frac{\Delta f_{\boldsymbol{\xi}}}{\Delta \xi_k} = s^{\text{YM}}/T^3 + s^f/T^3$$

[Giusti, Meyer, JHEP 01 (2013), 140]

[Dalla Brida, Giusti, Pepe, JHEP 04 (2020) 043]

$$s^{\rm YM} = \frac{1+\boldsymbol{\xi}^2}{\xi_k} \frac{1}{T} \frac{\Delta f_{\boldsymbol{\xi}}^{\rm YM}}{\Delta \xi_k} \quad s^f = -\frac{1+\boldsymbol{\xi}^2}{\xi_k} \frac{1}{T} \int_0^\infty dm_q \frac{\Delta \langle \bar{\psi}\psi \rangle_{\boldsymbol{\xi}}}{\Delta \xi_k}$$

• $\sim 5\%$ deviation from Stefan-Boltzmann limit

Results for L/a = 96, $L_0/a = 6$, $\beta = 8.8727$:

- Zs for non-singlet $T_{\mu\nu}$ with a precision of ~ 3% on Z_F and ~ 5% on Z_G
- Entropy density with a precision of $\sim 0.5\%$

Next steps:

- Finite volume effects: move to L/a = 144
- Discretization effects: extrapolate Zs $a/L_0 \rightarrow 0$ and $s(T) \ a \rightarrow 0$
- $\bullet~8$ temperatures in the range 1 GeV 100 GeV

[Dalla Brida, Giusti, Harris, Laudicina, Pepe, JHEP 04 (2022), 034]

- $\star\,$ Target accuracy on extrapolated Zs: $\sim 2\%$
- \star Target accuracy on the EoS in the continuum: $\sim 0.5\% 1\%$