How Gluon Pseudo-PDF Matrix Elements Depend on Gauge Smearing

Presented by William Good ${ }^{1,2}$
Co-Author: Huey-Wen Lin ${ }^{1,2}$

${ }^{1}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824
${ }^{2}$ Department of Computational Mathematics, Science and Engineering,
Michigan State University, East Lansing, MI 48824

Introduction and Background

- The parton distribution function (PDF) of a hadron is an important quantity in calculating cross sections
- The nucleon gluon PDF is important in Higgs and J / ψ productions
- The pion gluon PDF is important because of the pion's role in nuclear binding forces
- Meson and nucleon gluon PDFs have only recently been calculated on the lattice due to their noisy matrix elements (MEs)

Credit: Brookhaven National Lab

*We do not intend to call anyone out with our

Gauge Smearing

 presentation as different ensembles will likely produce different results- Gauge smearing is the process of taking a weighted average of a bare gauge link plus some "bypassing staples"
- This process suppresses UV fluctuations, used to improve signal
- Open questions brought up during LaMET 2022 workshop: How much is too much and can different smearing types be related?*
- We test smearing dependence on the unpolarized gluon PDF

Smearing Types and Parameters

- All lattice configurations have 1 step of HYP smearing by default
- "HYP5" means 1 step +4 additional steps of hypercubic smearing

$$
\alpha_{1}=0.75 \quad \alpha_{2}=0.6 \quad \alpha_{3}=0.3 \quad \text { A. Hasenfratz, et al., PRD 64:034504, } 2001
$$

- "STOUT10" means 1 step of HYP smearing + 10 steps of Stout smearing

$$
\rho=0.125 \quad \text { C. Morningstar, et al., PRD 69:054501, } 2004 .
$$

- "WILSON3" means 1 step of HYP smearing + Wilson flow with $t=3.0 a^{2}$ $n=100$
M. Lüscher, JHEP 08(2010)071.
- Wilson is implemented as many small STOUT steps. Some interesting numerical work on this has been explored.
M. Nagatsuka, et al, arXiv:2303.09938 [hep-lat]
- Relation between gradient flow and quasi-distributions has been explored in more detail as well

Lattice Details

- Calculation carried out with $N_{f}=2+1+1$ highly improved staggered quarks (HISQ) generated by MILC collaboration
- Wilson-clover fermions used in valence sector
- Lattice spacing $a \approx 0.12 \mathrm{fm}$
- Valence quarks tuned to reproduce light and strange pion masses $M_{\pi} \approx 310 \mathrm{MeV}$ and 690 MeV
- $O\left(10^{5}\right) 2$ pt correlator measurements over 1013 configurations

Ensemble	a12m310
$a(\mathrm{fm})$	$0.1207(11)$
$L^{3} \times T$	$24^{3} \times 64$
$M_{\pi}^{\text {val }}(\mathrm{GeV})$	$0.309(1)$
$M_{\eta_{s}}^{\text {val }}(\mathrm{GeV})$	$0.6841(6)$
$P_{z}(\mathrm{GeV})$	$[0,2.14]$
$N_{\text {cfg }}$	1013
$N_{\text {meas }}^{2 \text { pt }}$	324,160
$t_{\text {sep }}$	$[5,9]$

- Gaussian momentum smearing on quark fields
- Look at light and strange nucleon and pion:

$$
N_{l} \quad N_{s} \quad \pi \quad \eta_{s}=s \bar{s}
$$

Pseudo-PDF Method

$$
\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right.}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}
$$

A. V. Radyushkin, PRD 96:034025, 2017.
(Reduced pseudo-loffe time distribution) Removes divergences

Pseudo-PDF Method

$$
\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right.}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}
$$

Pseudo-PDF Method

$$
\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right.}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}
$$

2pt and 3pt Correlator Form

- 2pt correlator expands as:

$$
C_{h}^{2 \mathrm{pt}}\left(P_{z}, t_{s e p}\right)=\left|A_{h, 0}\right|^{2} e^{-E_{h, 0} t_{s e p}}+\left|A_{h, 1}\right|^{2} e^{-E_{h, 1} t_{s e p}}+\ldots
$$

- 3pt correlator expands as:

$$
\begin{aligned}
& C_{h}^{3 \mathrm{pt}}\left(z, P_{z}, t, t_{\text {sep }}\right)= \\
& \quad\left|A_{h, 0}\right|^{2}\langle 0| O_{g}|0\rangle e^{-E_{h, 0} t_{\text {sep }}}+\left|A_{h, 0}\right|\left|A_{h, 1}\right|\langle 0| O_{g}|1\rangle e^{-E_{h, 1}\left(t_{\text {sep }}-t\right)} e^{-E_{h, 0} t} \\
& \quad+\left|A_{h, 0}\right|\left|A_{h, 1}\right|\langle 1| O_{g}|0\rangle e^{-E_{h, 0}\left(t_{\text {sep }}-t\right)} e^{-E_{h, 1} t}+\left|A_{h, 1}\right|^{2}\langle 1| O_{g}|1\rangle e^{-E_{h, 1} t_{\text {sep }}}+\ldots
\end{aligned}
$$

- So we understand this:

$$
R_{h}\left(z, P_{z}, t_{\mathrm{sep}}, t\right)=\frac{C_{h}^{3 \mathrm{pt}}\left(z, P_{z}, t, t_{\mathrm{sep}}\right)}{C_{h}^{2 \mathrm{pt}}\left(P_{z}, t_{\text {sep }}\right)} \xrightarrow{t_{\text {sep }} \rightarrow \infty}\langle 0| O_{g}|0\rangle
$$

Gluon operator defined in

Ratio Data for $\mathrm{N}_{\mathrm{s}}\left(\mathrm{t}_{\mathrm{sep}}=0.84 \mathrm{fm}, \mathrm{z}=0.36 \mathrm{fm}, \mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}\right)$
Ratio for $t_{\text {sep }} / \mathrm{a}=7$

Ratio Data for $\mathrm{N}_{\mathrm{s}}\left(\mathrm{t}_{\mathrm{sep}}=0.84 \mathrm{fm}, \mathrm{z}=0.36 \mathrm{fm}, \mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}\right)$

Ratio for $t_{\text {sep }} / \mathrm{a}=7$

Better signal to noise ratio as expected

Reduced excited state contamination

Can't say much about absolute value because of renormalization constants

Ratio Plots with ME Fits for $\mathrm{N}_{\mathrm{s}}\left(\mathrm{z}=0.36 \mathrm{fm}, \mathrm{P}_{\mathrm{z}}=1.29 \mathrm{Gev}\right)$

Ratio Plots with ME Fits for $\mathrm{N}_{\mathrm{s}}\left(\mathrm{z}=0.36 \mathrm{fm}, \mathrm{P}_{\mathrm{z}}=1.29 \mathrm{Gev}\right)$

Overall, very noisy signal and loss of signal at larger $t_{\text {sep }}$

Ratio Plots with ME Fits for $\mathrm{N}_{\mathrm{s}}\left(\mathrm{z}=0.36 \mathrm{fm}, \mathrm{P}_{\mathrm{z}}=1.29 \mathrm{Gev}\right)$

Overall, very noisy signal and loss of signal at larger $t_{\text {sep }}$

Bare Matrix Elements for N_{s} at $P_{z}=1.29 \mathrm{GeV}$

Bare Matrix Elements for N_{s} at $P_{z}=1.29 \mathrm{GeV}$

Bare Matrix Elements for N_{s} at $P_{z}=1.29 \mathrm{GeV}$

Bare Matrix Elements for N_{s} at $\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}$

 and HYP7. Coincidence?

$$
\begin{aligned}
& \text { RpITD for } \mathrm{N}_{\mathrm{s}} \text { (left) and } \mathrm{N}_{1} \text { (right) } \quad \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z, z}\right) / \mathcal{M}\left(0 \cdot P_{z, 0}\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)} \underset{v=\mathrm{P}_{z}}{\left(\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{Gev}\right)}
\end{aligned}
$$

RplTD $P_{z}=3$

- HYP3 - HYP5 \triangle HYP7

2. STOUT10 - STOUT20 - WILSON1 \triangle WILSON3

$0.4_{0} 1$
2

RpITD $P_{z}=3$

RpITD for N_{s} (left) and N_{1} (right)
$\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$ ($\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{Gev}$)
Suspected correspondence

$$
v=\mathrm{zP}_{\mathrm{z}}
$$

RpITD $P_{z}=3$
as mentioned before
RpITD $P_{z}=3$

RpITD for N_{s} (left) and N_{l} (right)
 $\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$ ($\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{Gev}$)
 Suspected correspondence
 $$
v=\mathrm{zP}_{\mathrm{z}}
$$
 as mentioned before

RpITD $P_{z}=3$
RpITD $P_{z}=3$

- HYP3
- HYP5
\triangle HYP7
v HYP10

- WILSON1 \& WILSON3

Slight tension between lowest and highest smearing for the heavy pion mass (somewhat unexpected)

RpITD for N_{s} (left) and N_{1} (right)
 $\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$ ($P_{z}=1.29 \mathrm{Gev}$)
 Suspected correspondence
 $$
v=\mathrm{zP}_{\mathrm{z}}
$$
 as mentioned before

RpITD $P_{z}=3$
RplTD $P_{z}=3$

Slight tension between lowest and highest smearing for the heavy pion mass (somewhat unexpected)

Competing trends (at high z)?
Pion mass: \downarrow RpITD:
Smearing: 4 RpITD:

RpITD for η_{s} (left) and π (right) $\left(\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}\right)$
 $$
\begin{array}{r} \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)} \\ v=\mathrm{zP}_{z} \end{array}
$$

RplTD $P_{z}=3$

- HYP3 - HYP5 \triangle HYP7 \quad HYP10
- STOUT10

RplTD $P_{z}=3$

RpITD for η_{s} (left) and π (right) ($\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}$)
 $$
\begin{array}{r} \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)} \\ v=\mathrm{zP}_{z} \end{array}
$$

RpITD $P_{z}=3$

- HYP3 • HYP5 \triangle HYP7 v HYP10
- STOUT10

Similar tension just as in the nucleon case

RpITD for η_{s} (left) and π (right) ($\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}$)
 $$
\begin{array}{r} \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)} \\ v=\mathrm{zP}_{\mathrm{z}} \end{array}
$$

RpITD $P_{z}=3$

Similar tension just as in the nucleon case

Different trends than nucleon (at high z)? Pion mass: \downarrow RpITD: Smearing: \uparrow RpITD:

RpITD for η_{s} (left) and π (right)
 $\mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$
 $\left(\mathrm{P}_{\mathrm{z}}=1.29 \mathrm{GeV}\right)$
 Correspondence still here if you look closely
 RpITD $P_{z}=3$
 $$
v=\mathrm{zP}_{\mathrm{z}}
$$
 RpITD $P_{z}=3$

Similar tension just as in the nucleon case

Different trends than nucleon (at high z)? Pion mass: \downarrow RpITD: Smearing: \& RpITD:

PDF (Divided by Moment) Fit

Gluon matching kernel $R_{\text {gg }}$ connects the RpITD to the PDF as shown

$$
\mathscr{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x \frac{x g\left(x, \mu^{2}\right)}{\langle x\rangle_{g}} R_{g g}\left(x \nu, z^{2} \mu^{2}\right)
$$

Use a typical global analysis fit form

$$
B(A+1, C+1) \text { is beta function (integral of numerator) }
$$

$$
f_{g}(x, \mu)=\frac{x g(x, \mu)}{\langle x\rangle_{g}(\mu)}=\frac{x^{A}(1-x)^{C}}{B(A+1, C+1)}
$$

Minimize

$$
\begin{aligned}
& \chi^{2}\left(\mu, a, M_{\pi}\right)= \\
& \sum_{\nu, z} \frac{\left(\mathscr{M}^{\operatorname{fit}^{2}}\left(\nu, \mu, z^{2}, a, M_{\pi}\right)-\mathscr{M}^{\text {lat }}\left(\nu, z^{2}, a, M_{\pi}\right)\right)^{2}}{\sigma_{\mathscr{M}}^{2}\left(\nu, z^{2}, a, M_{\pi}\right)}
\end{aligned}
$$

Unpolarized Nucleon PDFs

$a=0.12 \mathrm{fm} \mathrm{M}_{\pi} \sim 690 \mathrm{MeV}$

Same ensemble calculation plotted with other lattice and global analysis results can be found here:
Z. Fan, WG, H. W. Lin, PRD 108:014508 (2023)

Unpolarized Nucleon PDFs

$a=0.12 \mathrm{fm} \mathrm{M} \mathrm{M}_{\pi} \sim 690 \mathrm{MeV}$

Same ensemble calculation plotted with other

Unpolarized Nucleon PDFs

$a=0.12 \mathrm{fm} \mathrm{M} \mathrm{M}_{\pi} \sim 690 \mathrm{MeV}$

Same ensemble calculation plotted with other

Unpolarized Nucleon PDFs

$a=0.12 \mathrm{fm} \mathrm{M} \mathrm{M}_{\pi} \sim 690 \mathrm{MeV}$

Same ensemble calculation plotted with other

Unpolarized Nucleon PDFs

$a=0.12 \mathrm{fm} \mathrm{M} \mathrm{M}_{\pi} \sim 690 \mathrm{MeV}$

CLEAR tension between WILSON3 and the rest Some tension between HYP5 and HYP7/STOUT10

Same ensemble calculation plotted with other

Unpolarized Nucleon PDFs

$a=0.12 \mathrm{fm} \mathrm{M} \mathrm{M}_{\pi} \sim 690 \mathrm{MeV}$

CLEAR tension between WILSON3 and the rest Some tension between HYP5 and HYP7/STOUT10

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

 lattice and global analysis results can be found here:Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

 lattice and global analysis results can be found here:Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

 lattice and global analysis results can be found here:Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

 lattice and global analysis results can be found here:Z. Fan, H. W. Lin, PLB 823:136778 (2021)
$a=0.12 \mathrm{fm} \mathrm{M} \mathrm{M}_{\pi} \sim 310 \mathrm{MeV}$

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

 lattice and global analysis results can be found here:Z. Fan, H. W. Lin, PLB 823:136778 (2021)
$\mathrm{a}=0.12 \mathrm{fm} \mathrm{M} \sim 310 \mathrm{MeV}$

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

 lattice and global analysis results can be found here:$\mathrm{a}=0.12 \mathrm{fm} \mathrm{M} \sim 310 \mathrm{MeV}$

CLEAR tension between WILSON3/STOUT20 and the rest
Slight tension between HYP5 and HYP7

Same ensemble calculation plotted with other

Unpolarized Pion PDFs

Conclusion *From Our Lattice*

- Can draw some conclusions from raw data and bare MEs
- The double ratio of the RpITD removes most smearing dependencies except in the heavier pion masses and some relationships can be seen here
- STOUT10 ~ HYP6? More samples to make some empirical relation??
- WILSON3 appears to be too much smearing for heavy pion masses, would like to explore extrapolation to zero flow time as seen in some of HadStruct's work
- This affects the PDFs as we would expect
- Smaller error bars on higher smearing, similar correspondences to the RpITD results, tension for heavier pion mass
- A Couple Caveats:
- How does this change on different lattices? Can one work harder to get better ME fist for different smearing types? Zero flow/smear extrap.? Fill in gaps between smearing amounts? Other smearing parameters? Different PDF fit form?

Podcast Plug:

Thank You!

Season 3 of H.W. Lin and B. Stanley's My Journey as a Physicists is hosted by Bill Good and features physicists working on the Long-Range Plan for Nuclear Science Season 1 is all about people working in the field of Lattice QCD and is hosted by Bryan Stanley

Backup

Appendix: Correlators and Operator

$$
\begin{aligned}
& C_{N}^{2 \mathrm{pt}}\left(P_{z} ; t\right)=\langle 0| \Gamma \int d^{3} y e^{-i y P_{z}} \chi(\vec{y}, t) \chi(\overrightarrow{0}, 0)|0\rangle \\
& \Gamma=\frac{1}{2}\left(1+\gamma_{4}\right) \quad \chi(\vec{y}, t)=\epsilon^{l m n}\left[u(y)^{l^{T}} i \gamma_{4} \gamma_{2} \gamma_{5} d^{m}(y)\right] u^{n}(y) \\
& C_{N}^{3 \mathrm{pt}}\left(z, P_{z} ; t_{\text {sep }}, t\right)= \\
& \quad=\langle 0| \Gamma \int d^{3} y e^{-i y P_{z}} \chi\left(\vec{y}, t_{\text {sep }}\right) \mathcal{O}_{g}(z, t) \chi(\overrightarrow{0}, 0)|0\rangle \begin{array}{c}
\text { (Meson correlators and } \\
\text { intereplation operator } \\
\text { defined similary })
\end{array} \\
& \mathcal{O}(z) \equiv \sum_{i \neq z, t} \mathcal{O}\left(F^{t i}, F^{t i} ; z\right)-\frac{1}{4} \sum_{i, j \neq z, t} \mathcal{O}\left(F^{i j}, F^{i j} ; z\right) \quad \text { Balitske tal, plB 808:135621, 2020. } \\
& \mathcal{O}\left(F^{\mu \nu}, F^{\alpha \beta} ; z\right)=F_{\nu}^{\mu}(z) U(z, 0) F_{\beta}^{\alpha}(0)
\end{aligned}
$$

Bare Matrix Elements for N_{s}

RpITD for $\mathrm{N}_{\mathrm{s}} \quad v=\mathrm{zP}_{z} \quad \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$

RpITD for $\mathrm{N}_{\mathrm{I}} \quad v=\mathrm{zP}_{z} \quad \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$

RpITD for $\eta_{\mathrm{s}} \quad v=\mathrm{zP}_{\mathrm{z}} \quad \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$

RpITD for $\pi \quad v=z_{z} \quad \mathscr{M}\left(\nu, z^{2}\right)=\frac{\mathcal{M}\left(z P_{z}, z^{2}\right) / \mathcal{M}\left(0 \cdot P_{z}, 0\right)}{\mathcal{M}\left(z \cdot 0, z^{2}\right) / \mathcal{M}(0 \cdot 0,0)}$

