How Gluon Pseudo-PDF Matrix Elements Depend on Gauge Smearing

Presented by William Good^{1,2}

Co-Author: Huey-Wen Lin^{1,2}

¹Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824

²Department of Computational Mathematics, Science and Engineering,

Michigan State University, East Lansing, MI 48824

Introduction and Background

- The parton distribution function (PDF) of a hadron is an important quantity in calculating cross sections
- The nucleon gluon PDF is important in Higgs and J/ψ productions
- The pion gluon PDF is important because of the pion's role in nuclear binding forces
- Meson and nucleon gluon PDFs have only recently been calculated on the lattice due to their noisy matrix elements (MEs)

See section 3.1.1 of H.W. Lin, FBS 64:58, 2023.

Gauge Smearing

*We do not intend to call anyone out with our presentation as different ensembles will likely produce different results

- Gauge smearing is the process of taking a weighted average of a bare gauge link plus some "bypassing staples"
- This process suppresses UV fluctuations, used to improve signal
- Open questions brought up during <u>LaMET 2022 workshop</u>: How much is too much and can different smearing types be related?*
- We test smearing dependence on the unpolarized gluon PDF

Image credit (for both): S. Solbrig, et al. arXiv:0710.0480 [hep-lat]

Smearing Types and Parameters

- All lattice configurations have 1 step of HYP smearing by default
- "HYP5" means 1 step + 4 additional steps of hypercubic smearing

 $\alpha_1 = 0.75$ $\alpha_2 = 0.6$ $\alpha_3 = 0.3$

A. Hasenfratz, et al., PRD 64:034504, 2001.

- "STOUT10" means 1 step of HYP smearing + 10 steps of Stout smearing ho=0.125 C. Morningstar, et al., PRD 69:054501, 2004.
- "WILSON3" means 1 step of HYP smearing + Wilson flow with $t = 3.0a^2$ n = 100
 - Wilson is implemented as many small STOUT steps. Some interesting numerical work on this has been explored.
 M. Nagatsuka, et al, arXiv:2303.09938 [hep-lat]
 - Relation between gradient flow and quasi-distributions has been explored in more detail as well
 K Monahan, K. Orginos, JHEP 03(2017)116

Lattice Details

Follana et al. PRD 75:054502, 2007. A. Bazavov, et al. [MILC], PRD 82:074501, 2010. A. Bazavov, et al. [MILC], PRD 87:054505, 2013.

- Calculation carried out with $N_f = 2 + 1 + 1$ highly improved staggered quarks (HISQ) generated by MILC collaboration
- Wilson-clover fermions used in valence sector
- Lattice spacing $a \approx 0.12$ fm
- Valence quarks tuned to reproduce light and strange pion masses $M_{\pi} \approx 310 \,\mathrm{MeV}$ and $690 \,\mathrm{MeV}$
- $O(10^5)$ 2pt correlator measurements over 1013 configurations t_{sep}
- Gaussian momentum smearing on quark fields
- Look at light and strange nucleon and pion:

 $N_l \quad N_s \quad \pi \quad \eta_s = s\bar{s}$

5/16

	Ensemble	a12m310
	$a~({ m fm})$	0.1207(11)
	$L^3 \times T$	$24^3 \times 64$
	M_{π}^{val} (GeV)	0.309(1)
	$M_{\eta_s}^{\mathrm{val}}$ (GeV)	0.6841(6)
	P_z (GeV)	[0, 2.14]
	$N_{ m cfg}$	1013
	$N_{ m meas}^{ m 2pt}$	$324,\!160$
5	$t_{ m sep}$	[5,9]

Pseudo-PDF Method

$$\mathcal{M}(\nu,z^2) = \frac{\mathcal{M}(zP_z,z^2)/\mathcal{M}(0\cdot P_z,0)}{\mathcal{M}(z\cdot 0,z^2)/\mathcal{M}(0\cdot 0,0)}$$

Pseudo-PDF Method

$$\mathcal{M}(\nu,z^2) = \frac{\mathcal{M}(zP_z,z^2)/\mathcal{M}(0\cdot P_z,0)}{\mathcal{M}(z\cdot 0,z^2)/\mathcal{M}(0\cdot 0,0)}$$

2pt and 3pt Correlator Form

• 2pt correlator expands as:

$$C_h^{2\text{pt}}(P_z, t_{sep}) = |A_{h,0}|^2 e^{-E_{h,0}t_{sep}} + |A_{h,1}|^2 e^{-E_{h,1}t_{sep}} + \dots$$

- 3pt correlator expands as: $C_{h}^{3\text{pt}}(z, P_{z}, t, t_{\text{sep}}) = |A_{h,0}|^{2} \langle 0|O_{g}|0\rangle e^{-E_{h,0}t_{\text{sep}}} + |A_{h,0}||A_{h,1}| \langle 0|O_{g}|1\rangle e^{-E_{h,1}(t_{\text{sep}}-t)} e^{-E_{h,0}t} + |A_{h,0}||A_{h,1}| \langle 1|O_{g}|0\rangle e^{-E_{h,0}(t_{\text{sep}}-t)} e^{-E_{h,1}t} + |A_{h,1}|^{2} \langle 1|O_{g}|1\rangle e^{-E_{h,1}t_{\text{sep}}} + \dots$
- So we understand this:

$$R_h(z, P_z, t_{\rm sep}, t) = \frac{C_h^{\rm 3pt}(z, P_z, t, t_{\rm sep})}{C_h^{\rm 2pt}(P_z, t_{sep})} \xrightarrow{t_{sep} \to \infty} \langle 0 | O_g | 0 \rangle$$

Gluon operator defined in Balitsky et al, PLB 808:135621, 2020

Ratio Plots with ME Fits for N_s (z=0.36 fm, P_z =1.29 Gev)

Ratio Plots with ME Fits for N_s (z=0.36 fm, P_z =1.29 Gev)

Overall, very noisy signal and loss of signal at larger $t_{sep} \ensuremath{$

Ratio Plots with ME Fits for N_s (z=0.36 fm, P_z =1.29 Gev)

Slight tension between lowest and highest smearing for the heavy pion mass (somewhat unexpected)

11/16

PDF (Divided by Moment) Fit

Gluon matching kernel R_{gg} connects the RpITD to the PDF as shown

$$\mathcal{M}(\nu, z^2) = \int_0^1 dx \frac{xg(x, \mu^2)}{\langle x \rangle_g} R_{gg}(x\nu, z^2\mu^2)$$

Use a typical global analysis fit form

Balitsky et al, PLB 808:135621, 2020.

B(A+1,C+1) is beta function (integral of numerator)

$$f_g(x,\mu) = \frac{xg(x,\mu)}{\langle x \rangle_g(\mu)} = \frac{x^A (1-x)^C}{B(A+1,C+1)}$$

Minimize

$$\chi^{2}(\mu, a, M_{\pi}) = \sum_{\nu, z} \frac{(\mathscr{M}^{\text{fit}}(\nu, \mu, z^{2}, a, M_{\pi}) - \mathscr{M}^{\text{lat}}(\nu, z^{2}, a, M_{\pi}))^{2}}{\sigma^{2}_{\mathscr{M}}(\nu, z^{2}, a, M_{\pi})}$$

(μ =2 GeV is the renormalization scale in the MS-bar scheme)

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, WG, H. W. Lin, PRD 108:014508 (2023)

CLEAR tension between WILSON3 and the rest Some tension between HYP5 and HYP7/STOUT10

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Unpolarized Pion PDFs

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Unpolarized Pion PDFs

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Unpolarized Pion PDFs

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

CLEAR tension between WILSON3/STOUT20 and the rest Slight tension between HYP5 and HYP7

Same ensemble calculation plotted with other lattice and global analysis results can be found here:

Z. Fan, H. W. Lin, PLB 823:136778 (2021)

Conclusion *From Our Lattice*

- Can draw some conclusions from raw data and bare MEs
- The double ratio of the RpITD removes most smearing dependencies except in the heavier pion masses and some relationships can be seen here
 - STOUT10 ~ HYP6? More samples to make some empirical relation??
 - WILSON3 appears to be too much smearing <u>for heavy pion masses</u>, would like to explore extrapolation to zero flow time as seen in some of HadStruct's work
- This affects the PDFs as we would expect
 - Smaller error bars on higher smearing, similar correspondences to the RpITD results, tension for heavier pion mass
- A Couple Caveats:
 - How does this change on different lattices? Can one work harder to get better ME fist for different smearing types? Zero flow/smear extrap.? Fill in gaps between smearing amounts? Other smearing parameters? Different PDF fit form?

Thank You!

Podcast Plug:

Season 3 of H.W. Lin and B. Stanley's My Journey as a Physicists is hosted by Bill Good and features physicists working on the Long-Range Plan for Nuclear Science Season 1 is all about people working in the field of Lattice QCD and is hosted by Bryan Stanley

Backup

Appendix: Correlators and Operator

$$\begin{split} C_N^{2\text{pt}}(P_z;t) &= \langle 0 | \Gamma \int d^3 y \, e^{-iyP_z} \chi(\vec{y},t) \chi(\vec{0},0) | 0 \rangle \\ \Gamma &= \frac{1}{2} (1+\gamma_4) \qquad \chi(\vec{y},t) = \epsilon^{lmn} [u(y)^{l^T} i \gamma_4 \gamma_2 \gamma_5 d^m(y)] u^n(y) \\ C_N^{3\text{pt}}(z,P_z;t_{\text{sep}},t) &= \\ &= \langle 0 | \Gamma \int d^3 y \, e^{-iyP_z} \chi(\vec{y},t_{\text{sep}}) \mathcal{O}_g(z,t) \chi(\vec{0},0) | 0 \rangle \end{split}$$
 (Meson correlation defined similar defined

elators and operator larly)

$$\mathcal{O}(z) \equiv \sum_{i \neq z, t} \mathcal{O}(F^{ti}, F^{ti}; z) - \frac{1}{4} \sum_{i, j \neq z, t} \mathcal{O}(F^{ij}, F^{ij}; z)$$

Balitsky et al, PLB 808:135621, 2020.

 $\mathcal{O}(F^{\mu\nu}, F^{\alpha\beta}; z) = F^{\mu}_{\nu}(z)U(z, 0)F^{\alpha}_{\beta}(0)$

Bare Matrix Elements for N_s

RpITD for N_s
$$v = zP_z$$
 $\mathcal{M}(\nu, z^2) = \frac{\mathcal{M}(zP_z, z^2) / \mathcal{M}(0 \cdot P_z, 0)}{\mathcal{M}(z \cdot 0, z^2) / \mathcal{M}(0 \cdot 0, 0)}$

RpITD for N_I
$$v = zP_z$$
 $\mathcal{M}(\nu, z^2) = \frac{\mathcal{M}(zP_z, z^2) / \mathcal{M}(0 \cdot P_z, 0)}{\mathcal{M}(z \cdot 0, z^2) / \mathcal{M}(0 \cdot 0, 0)}$

$$\begin{array}{ll} \mathsf{RpITD for } \eta_{\mathsf{s}} & \textit{v} = \mathsf{zP}_{\mathsf{z}} & \mathscr{M}(\nu, z^2) = \frac{\mathcal{M}(z P_z, z^2) / \mathcal{M}(0 \cdot P_z, 0)}{\mathcal{M}(z \cdot 0, z^2) / \mathcal{M}(0 \cdot 0, 0)} \end{array}$$

RpITD for
$$\pi$$
 $\nu = zP_z$ $\mathcal{M}(\nu, z^2) = \frac{\mathcal{M}(zP_z, z^2) / \mathcal{M}(0 \cdot P_z, 0)}{\mathcal{M}(z \cdot 0, z^2) / \mathcal{M}(0 \cdot 0, 0)}$

