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Teaching to extract spectral densities from lattice correlators
to a broad audience of learning-machines

Michele Buzzicotti,1, ∗ Alessandro De Santis,1, † and Nazario Tantalo1, ‡

1University and INFN of Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
(Dated: July 4, 2023)

We present a new supervised deep-learning approach to the problem of the extraction of smeared
spectral densities from Euclidean lattice correlators. A distinctive feature of our method is a model-
independent training strategy that we implement by parametrizing the training sets over a functional
space spanned by Chebyshev polynomials. The other distinctive feature is a reliable estimate of the
systematic uncertainties that we achieve by introducing several ensembles of machines, the broad
audience of the title. By training an ensemble of machines with the same number of neurons over
training sets of fixed dimensions and complexity, we manage to provide a reliable estimate of the
systematic errors by studying numerically the asymptotic limits of infinitely large networks and
training sets. The method has been validated on a very large set of random mock data and also
in the case of lattice QCD data. We extracted the strange-strange connected contribution to the
smeared R-ratio from a lattice QCD correlator produced by the ETM Collaboration and compared
the results of the new method with the ones previously obtained with the HLT method by finding
a remarkably good agreement between the two totally unrelated approaches.

I. INTRODUCTION

The problem of the extraction of hadronic spectral den-
sities from Euclidean correlators, computed from numer-
ical lattice QCD simulations, has attracted a lot of at-
tention since many years (see Refs. [1–30], the works on
the subject of which we are aware of, and Refs. [31, 32]
for recent reviews). At zero temperature, the theoretical
and phenomenological importance of hadronic spectral
densities, strongly emphasized in the context of lattice
field theory in Refs. [1, 11, 13, 14, 17–19], is associated
with the fact that from their knowledge it is possible to
extract all the information needed to study the scattering
of hadrons and, more generally, their interactions.

From the mathematical perspective, the problem of the
extraction of spectral densities from lattice correlators is
equivalent to that of an inverse Laplace-transform oper-
ation, to be performed numerically by starting from a
discrete and finite set of noisy input data. This is a no-
toriously ill-posed numerical problem that, in the case
of lattice field theory correlators, gets even more compli-
cated because lattice simulations have necessarily to be
performed on finite volumes where the spectral densities
are badly-behaving distributions.

In Ref. [14], together with M. Hansen and A. Lupo, one
of the authors of the present paper proposed a method to
cope with the problem of the extraction of spectral den-
sities from lattice correlators that allows to take into ac-
count the fact that distributions have to be smeared with
sufficiently well-behaved test functions. Once smeared,
finite volume spectral densities become numerically man-
ageable and the problem of taking their infinite volume
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FIG. 1. By introducing a discrete functional-basis, with
elements Bn(E), that is dense in the space of square-
integrable functions f(E) in the interval [E0,∞) with E0 > 0,
any such function can exactly be represented as f(E) =∑∞

n=0 cnBn(E). With an infinite number of basis functions
(Nb = ∞) and by randomly selecting an infinite number
(Nρ = ∞) of coefficient vectors c = (c0, · · · , cNb), one can
get any possible spectral density. This is the situation repre-
sented by the filled blue disk. If the number of basis functions
Nb and the number of randomly extracted spectral densities
Nρ are both finite one has a training set that is finite and
that also depends on Nb. This is the situation represented in
the first disk on the left. The other two disks schematically
represent the situations in which either Nb or Nρ is infinite.

limit is mathematically well defined. The method of
Ref. [14] (HLT method in short) has been further re-
fined in Ref. [21] where it has been validated by perform-
ing very stringent tests within the two-dimensional O(3)
non-linear σ-model.

In this paper we present a new method for the extrac-
tion of smeared spectral densities from lattice correlators
that is based on a supervised deep-learning approach.

The idea of using machine-learning techniques to ad-
dress the problem of the extraction of spectral densities
from lattice correlators is certainly not original (see e.g.
Ref. [15, 16, 22–29]). The great potential of properly-
trained deep neural networks in addressing this problem

ar
X

iv
:2

30
7.

00
80

8v
1 

 [
he

p-
la

t]
  3

 J
ul

 2
02

3

https://arxiv.org/abs/2307.00808


Introduction: hadronic spectral densities in Lattice QCD



Hadronic processes can be
described in terms of
spectral densities

. R-ratio: e+e− 7→ X

ETMC Phys.Rev.Lett. 130, 241901 (2023)

. Inclusive hadronic τ decays: τ 7→ ντX

A. Evangelista’s talk
A. Evangelista et al. (next week)

. Inclusive decays of heavy mesons: B 7→ `ν̄X

A. Barone’s talk
S. Hashimoto PTEP, Volume 2017, Issue 5, (2017)
P. Gambino and S. Hashimoto PRL 125, 032001 (2020)
P. Gambino et al. JHEP volume 2022, Article n: 83 (2022)
A. Barone et al. arXiv:2305.14092 (2023)

. Deep Inelastic Scattering: e−P 7→ e−X

M. T. Hansen et al. Phys.Rev.D 96, 094513 2017

. Radiative leptonic decays: Ds 7→ `ν`γ
∗

R. Frezzotti et al. arxiv:2306.07228
. Spectrum analysis

A. Smecca’s talk
L. Del Debbio et al. EPJ C volume 83, Article number: 220
(2023)
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Spectral densities are related to Euclidean correlation functions calculated on the lattice

C(t) =

∫
d3x e−ip·x 〈0| Ô1e

−tĤ+iP̂ ·xÔ2 |0〉 =

∫ ∞
E0

dE e−tEρ(E)

ρ(E) ≡ 〈0| Ô1δ(Ĥ − E)δ3(P̂ − p)Ô2 |0〉

Extracting ρ(E) from C(t) is a numerically ill-posed inverse problem

. t = aτ τ = 1, · · · , T finite amount of information

. C̄(t)±∆C(t) imprecise data
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Physics is associated with infinite volume spectral densities

E continuum spectrum

ρ
(E
,∞

)

Finite volume spectral densities are badly-behaving distributions

ρ(E,L) =
∑
n

ωn(L)δ
(
E − En(L)

)
En discrete spectrum

ρ
(E
,L

)

Axiomatic: spectral densities must be smeared

ρ̂σ(E,L) =

∫ ∞
0

dωKσ(E,ω)ρ(ω,L)

En discrete spectrum

ρ̂
σ
(E
,L

)
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Kσ(E,ω) =
1√
2πσ

exp

(
− (E − ω)2

2σ2

)
ρ(E,∞) = lim

σ→0
lim
L→∞

ρ̂σ(E,L)

We focus on the extracion of ρ̂σ(E) smeared with a Gaussian of resolution σ > 0

A method based on linearity and Backus-Gilbert regularization already exists:
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Hadronic spectral densities are important quantities whose nonperturbative knowledge allows for
calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and
nonleptonic decay rates. The extraction of spectral densities from lattice correlators is a notoriously difficult
problem because lattice simulations are performed in Euclidean time and lattice data are unavoidably
affected by statistical and systematic uncertainties. In this paper we present a new method for extracting
hadronic spectral densities from lattice correlators. The method allows for choosing a smearing function at
the beginning of the procedure and it provides results for the spectral densities smeared with this function
together with reliable estimates of the associated uncertainties. The same smearing function can be used
in the analysis of correlators obtained on different volumes, such that the infinite-volume limit can be
studied in a consistent way. While the method is described by using the language of lattice simulations, in
reality it is completely general and can profitably be used to cope with inverse problems arising in different
fields of research.

DOI: 10.1103/PhysRevD.99.094508

I. INTRODUCTION

Hadronic spectral densities are crucial ingredients in the
calculation of physical observables associated with the
continuum spectrum of the QCD Hamiltonian. A notable
classical example is provided by the differential cross
section for the process eþe− ↦ hadrons that, at leading
order in the electromagnetic coupling, is proportional to the
QCD spectral density evaluated between hadronic electro-
magnetic currents,

dΣðEÞ
dE

∝ h0jJkemð0ÞδðH − EÞδ3ðPÞJkemð0Þj0i; ð1Þ

where E is the energy of the electron-positron pair in the
center-of-mass frame, H and P are respectively the QCD
Hamiltonian and total momentum operators and JμemðxÞ is
the hadronic electromagnetic current. Other important
examples of observables, in which spectral densities play
a crucial role, are the flavor-changing nonleptonic decay
rates of kaons and heavy flavored mesons, the deep
inelastic scattering cross section, and thermodynamic

observables arising in the study of QCD at finite temper-
ature and of the quark-gluon plasma.
It is notoriously difficult to obtain model-independent

nonperturbative theoretical predictions for hadronic spec-
tral densities. In principle this is a problem that can be
addressed from first principles within the solid framework
of lattice QCD. However, in practice, one has to face highly
nontrivial numerical and theoretical problems in order to
extract spectral densities from lattice simulations.
The origin of these problems can be traced back to the

fact that lattice results unavoidably are affected by stat-
istical and systematic errors. More precisely, the primary
observables computed in a lattice simulation are Euclidean
time-ordered correlators at discrete values of the space-time
coordinates and on a finite volume, e.g.,

CðtÞ ¼ 1

L3

X
x

Th0jOðxÞŌð0Þj0iL; ð2Þ

where L is the linear extent of the spatial volume V ¼ L3

while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 094508 (2019)

2470-0010=2019=99(9)=094508(15) 094508-1 Published by the American Physical Society

A. Lupo’s talk for the connection between Bayesian and Backus-Gilbert methods
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Machine Learning approach



The idea of using machine learning for spectral reconstruction is not original

. Fournier et al. 2020

relatively large sampling induces errors due to the Trotter
approximation, which makes it even harder to obtain the
power spectrum [30]. Different slices were computed on
different simulations to ensure their independence. The
correlation function was computed from a total of 6 × 106

simulations divided into 300 blocks. Further details can be
found in the Supplemental Material [17]. Before using
ANN to obtain the imaginary-time correlation function, we
must express the data on the same basis as the one used for
the training. The QMC data were therefore transformed
using the same PCA as the training data, interpolating the
missing imaginary-time slices using cubic splines.
Figure 3 shows that the essential features, the low-

frequency decay and the peak at around ω ¼ 20, are well

reproduced by our ANN approach even for themodel trained
on 2000 data entries only. The model trained on the entire
dataset of 100 000 entries shows almost perfect agreement
with the analytic solution. On the other hand,MaxEnt fails to
provide accurate results.Wewould like topoint out, however,
that better results using MaxEnt can be obtained by comput-
ing the correlation function cðτÞ on a larger number of
points [30].
To complete the validation of the proposed ANN model,

we benchmark it using the methodology applied in the
machine learning work of Arsenault et al. [13]. We seek to
recover the electron single-particle spectral density in the
real frequency domain AðωÞ from the fermionic Green’s
function GðτÞ in imaginary time domain, with the two
quantities related through Eq. (3). The model spectral
densities AðωÞ are defined as a sum of uncorrelated
Gaussian distributions with one peak constrained to be
located close to the origin [31]. Following previous works,
we perform the dimensionality reduction by working in
the orthogonal basis of Legendre polynomials and keeping
first 64 coefficients [9,32]. Since the quantum Monte Carlo
data are noisy by nature, we also generated test sets in
which the Green’s functions were corrupted by errors as
G̃ðτiÞ ¼ GðτiÞ þ ϵi, where ϵi are independent random
variables normally distributed with standard deviation η.
Details of the dataset generation and training can be found
in the Supplemental Material [17].
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0.005

0.01

I(
)

N=2000

0 50

N=10 000

0 50

N=100 000

Analytic ANNMaxEnt

FIG. 3. Analytic continuation of the QMC data performed
using MaxEnt and the proposed ANN approach for different
training set sizes N.
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FIG. 4. (a) Comparison of the starting spectral functions AðωÞ (solid lines) with the predicted ÂðωÞ calculated using the MaxEnt
approach and the proposed ANN model at different noise levels η for three examples of spectral density functions not present in the
training dataset. (b) MAE distributions for the two methods and different noise levels η. (c) Comparison of average MAE for the two
methods and different noise levels η.

PHYSICAL REVIEW LETTERS 124, 056401 (2020)

056401-4

. Kades et al. 2021
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FIG. 1. Examples of mock spectral functions reconstructed via our neural network approach for the cases of one, two and three
Breit-Wigner peaks. The chosen functions mirror the desired locality of suggested reconstructions around the original function
(red line). Additive, Gaussian noise of width 10−3 is added to the discretised analytic form of the associated propagator of
the same original spectral function multiple times. The shaded area depicts for each frequency ω the distribution of resulting
outcomes, while the dashed green line corresponds to the mean. The results are obtained from the FC parameter network
optimised with the parameter loss. The network is trained on the largest defined parameter space which corresponds to the
volume Vol O. The uncertainty for reconstructions decreases for smaller volumes as illustrated in Figure 4. A detailed discussion
on the properties and problems of a neural network based reconstruction is given in Section IV A.

encountered in many other fields, such as medical imag-
ing or the calibration of option pricing methods. Typical
errors on the input data G(pi) are on the order of 10−2

to 10−5 when the propagator at zero momentum is of the
order of unity.

To appreciate the problems arising in such a recon-
struction more clearly, let us assume we have a sugges-
tion for the spectral function ρsug and its corresponding
propagator Gsug. The difference to the measured data is
encoded in

‖G(p)−Gsug(p)‖ =∥∥∥∥∫ ∞
0

dω

π

ω

ω2 + p2

[
ρ(ω)− ρsug(ω)

]∥∥∥∥ , (3)

with a suitable norm ‖.‖. Evidently, even if this expres-
sion vanishes point-wise, i.e. ‖G(pi) − Gsug(pi)‖ = 0 for
all pi, the spectral function is not uniquely fixed. Experi-
ence has shown that with typical numerical errors on the
input data, qualitatively very different spectral functions
can lead to in this sense equivalent propagators. This
situation can often be improved on by taking more prior
knowledge into account, c.f. the discussion in [27]. This
includes properties such as:

1. Normalisation and positivity of spectral functions
of asymptotic states. For gauge theories, this may
reduce to just the normalisation to zero, expressed
in terms of the Oehme-Zimmermann superconver-
gence [28, 29].

2. Asymptotic behaviour of the spectral function at
low and high frequencies.

3. The absence of clearly unphysical features, such as
drastic oscillations in the spectral function and the
propagator.

Additionally, the parametrisation of the spectral func-
tion in terms of frequency bins is just one particular ba-
sis. In order to make reconstructions more feasible, other
choices, and in particular physically motivated ones, may
be beneficial, c.f. again the discussion in [27]. In this
work, we consider a basis formulated in terms of physical
resonances, i.e. Breit-Wigner peaks.

B. Existing methods

The inverse problem as defined in (1) has an exact so-
lution in the case of exactly known, discrete correlator
data [30]. However, as soon as noisy inputs are con-
sidered, this approach turns out to be impractical [31].
Therefore, the most common strategy to treat this prob-
lem is via Bayesian inference. This approach is based
on Bayes’ theorem, which states that the posterior prob-
ability is essentially given by two terms, the likelihood
function and prior probability:

P (ρ|D, I) ∝ P (D|ρ, I)P (ρ|I) . (4)

It explicitly includes additionally available prior infor-
mation on the spectral function in order to regularise the
inversion task. The likelihood P (D|ρ) encodes the prob-
ability for the input data D to have arisen from the test
spectral function ρ, while P (ρ) quantifies how well this
test function agrees with the available prior information.
The two probabilities fully specify the posterior distri-
bution in principle, however they may be known only
implicitly. In order to gain access to the full distribu-
tion, one may sample from the posterior, e.g. through
a Markov Chain Monte Carlo process in the parameter
space of the spectral function. However, in practice one
is often content with the maximum a posteriori (MAP)
solution. Given a uniform prior, the Maximum Likeli-
hood Estimate (MLE) corresponds to an estimate of the
MAP.
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Figure 6. Mock data test with input spectral function containing a resonance peak and a continuum part (cf. Eq. (27) with
Nτ = 96. The black dashed line denotes the input spectral function. From left to right the width of the resonance peak in the
input spectral function, Γ, is increased with the peak location of the resonance peak, Mres, fixed in the each row, while from
bottom to top Mres is increased with Γ fixed in the each column. The red solid line and purple band represent the mean values
and uncertainties of spectral functions reconstructed from the SVAE, respectively. The black solid line and blue band denote
the mean values and uncertainties of spectral functions reconstructed from the MEM with the blue dotted line the default
model.

different combinations: either Gaussian noise or log-normal is used in the training or test process. We found that
results of spectral functions obtained in following cases have minor difference compared to our current results with
Gaussian noise used in both training and tests. These cases are: 1) the log-normal noise is used in both the training
and tests; 2) a mismatch in the noise model: Gaussian noise is used in the training while log-normal noise is used in
the tests and vice versa and 3) the multivariate Gaussian noise, i.e. including correlations among different time slices,
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WHAT’S DIFFERENT?

1) Is it possible to devise a model independent training strategy ?

2) If such a strategy is found, is it then possible to quantify reliably , together with the
statistical errors, also the unavoidable systematic uncertainties ?
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1) FUNCTIONAL-BASIS to parametrize the training set

Nb number of basis functions
Nρ number of spectral functions in the space

Nb = 4
Nρ = 12

Nb = 6
Nρ = ∞

Nb = ∞
Nρ = 30

Nb = ∞
Nρ = ∞

1

Limiting /either Nb and/or Nρ means limiting the information to which the neural network is exposed.

Model independence is achieved in the limit (Nb, Nρ) 7→ ∞
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We choose Chebyshev polynomials as basis functions

ρ(E) = θ(E − E0)

Nb∑
n=0

cn
[
Tn(E)− Tn(E0)

]
cn randomly generated
E0 mass gap
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ρ
(E

)

Nb = 16

Nb = 32

Nb = 128

Nb = 512

and generate Nρ unsmeared spectral densities

ρ(E) →
INPUT C = {C(a), C(2a), · · · }

OUTPUT ρ̂σ = {ρ̂σ(E1), ρ̂σ(E2), · · · }
→ Tσ(Nb, Nρ) TRAINING SET
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2) ENSEMBLE OF MACHINES to quantify the error

We consider 3 architectures based on 1D Convolutional layers

8

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 12 32x12 3 2 LeakyReLu
Conv1D 24 16x24 3 2 LeakyReLu
Conv1D 48 8x48 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 180871

TABLE II. arcM : the medium-size architecture used in this
work. See TABLE I for the description.

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 32 32x32 3 2 LeakyReLu
Conv1D 64 16x64 3 2 LeakyReLu
Conv1D 128 8x128 3 2 LeakyReLu
Flatten 1024
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 371311

TABLE III. arcL: the largest architecture used in this work.
See TABLE I for the description.

which contains enough variability so that, once trained,
the network is able to provide the correct answer, within
the quoted errors, for any possible input correlator.

As a matter of fact, the situation in which the neural
network can exactly reconstruct any possible function is
merely ideal. That would be possible only in absence of
errors on the input data and with a neural network with
an infinite number of neurons, trained on an infinitely
large and complex training set. This is obviously impos-
sible and in fact our goal is the realistic task of getting an
output for the smeared spectral density as close as pos-
sible to the exact one by trading the unavoidable limited
abilities of the neural network with a reliable estimate of
the systematic error. In order to face this challenge we
used the algorithmic strategy described in FIG. 1, FIG. 2
and in FIG. 3. In our strategy,

• the fact that the network cannot be infinitely large
is parametrized by the fact that Nn (the number of
neurons) is finite;

• the fact that during the training a network can-
not be exposed to any possible spectral density is
parametrized by the fact that Nb (the number of
basis functions) and Nρ (the number of spectral
densities to which a network is exposed during the
training) are finite (see FIG. 1);

• the fact that at fixed

N = (Nn, Nb, Nρ) (35)

the answer of a network cannot be exact, and there-
fore has to be associated with an error, is taken into
account by introducing an ensemble of machines,
with Nr replicas, and by estimating this error by
studying the distribution of the different Nr an-
swers in the Nr 7→ ∞ limit (see FIG. 2);

• once the network (and statistical) errors at fixed
N are given, we can study numerically the N 7→
∞ limits and also quantify, reliably, the additional
systematic errors associated with these unavoidable
extrapolations (see FIG. 3).

We are now going to provide the details concerning the
choice of the functional basis that we used to parametrize
the spectral densities and to build our training sets.

A. The functional-basis

In our strategy we envisage studying numerically the
limit Nb 7→ ∞ and, therefore, provided that the system-
atic errors associated with this extrapolation are properly
taken into account, there is no reason to prefer a partic-
ular basis w.r.t. any other. For our numerical study we
used the Chebyshev polynomials of the first kind as basis
functions (see for example Ref. [44]).
The Chebyshev polynomials Tn(x) are defined for x ∈

[−1, 1] and satisfy the orthogonality relations

∫ +1

−1

dx
Tn(x)Tm(x)√

1− x2
=


0 n ̸= m,
π
2 n = m ̸= 0

π n = m = 0

. (36)

In order to use them as a basis for the spectral densities
that live in the energy domain E ∈ [E0,∞), we intro-
duced the exponential map

x(E) = 1− 2e−E (37)

and set

Bn(E) = Tn(x(E))− Tn(x(E0)) . (38)

Notice that the subtraction of the constant term
Tn(x(E0)) has been introduced in order to be able to
cope with the fact that hadronic spectral densities vanish
below a threshold energy E0 ≥ 0 that we consider an un-
known of the problem. With this choice, the unsmeared
spectral densities that we use to build our training sets
are written as

ρ(E;Nb) = θ(E − E0)

Nb∑
n=0

cn [Tn (x(E))− Tn (x(E0))] ,

(39)

and vanish identically for E ≤ E0. Once E0 and
the coefficients cn that define ρ(E;Nb) are given, the
correlator and the smeared spectral density associated

ID Nn number of neurons
arcS 94651
arcM 180871
arcL 371311

. The answer of a machine with finite Nn neurons, trained over a finite set Tσ(Nb, Nρ) cannot be exact

. To quantify the network error we introduce Nr = 20 replica machines, the ensemble of machines, at
fixedN = (Nn, Nb, Nρ)
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TEACHING the ensemble of machines

C(t)
∣∣∣ρ̂predσ (E,N , r)− ρ̂trueσ (E)

∣∣∣
r = 1

3
2

Tσ(Nb, Nρ)

N

SUPERVISED TRAINING

Σ̂lattnoise injection

+ input pre-processing

1

Σ̂latt is the covariance matrix of a true lattice correlator
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The broad audience of learning-machines
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Quoting the final result with errors

Cc(t) ρ̂predσ (E,N , c, r)

ρ̂predσ (E,N)±∆stat
σ (E,N)

ρ̂predσ (E)±∆tot
σ (E)

0 ∞
Nρ

0 ∞
Nn

0 ∞
Nb

+ +

r = 1

3
2

TRAINED
Ensemble of
machines

c

+

∆latt
σ (E,N) ∆net

σ (E,N)

r

(1) (2)

(3)

1
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Validation on 2000-sample test sets
histograms of the significance

pσ(E) =
ρ̂pred
σ (E)− ρ̂true

σ (E)

∆tot(E)



ρ(E) =

Nb≤1024∑
n=0

cnTn(E)
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We observe deviations less than 1:2:3 standard deviations in about 80% : 95% : 99% of the cases
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Mock data inspired by physical models
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None of these spectral densities are included in the training set
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True lattice data: the R-ratio

R(E) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)



C(t) =
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0
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e−tωR(ω) C(t) = −1
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We present a first-principles lattice QCD investigation of the R ratio between the eþe− cross section into
hadrons and into muons. By using the method of Ref. [1], that allows one to extract smeared spectral
densities from Euclidean correlators, we compute the R ratio convoluted with Gaussian smearing kernels of
widths of about 600 MeV and central energies from 220 MeV up to 2.5 GeV. Our theoretical results are
compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of R-ratio
experimental measurements with the same kernels and, by centering the Gaussians in the region around the
ρ-resonance peak, a tension of about 3 standard deviations is observed. From the phenomenological
perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections, and
this might affect the observed tension. From the methodological perspective, our calculation demonstrates
that it is possible to study the R ratio in Gaussian energy bins on the lattice at the level of accuracy required
in order to perform precision tests of the standard model.

DOI: 10.1103/PhysRevLett.130.241901

Introduction.—The R ratio between the eþe− cross
section into hadrons with that into muons plays a funda-
mental rôle in particle physics since its introduction in
Ref. [3]. In recent years, the importance of the R ratio has
been mainly associated with the fact that its knowledge, as
a function of the center-of-mass energy of the electrons,
allows one to predict the leading hadronic contribution

(HVP) to the muon anomalous magnetic moment (aμ) via a
dispersive approach. The dispersive determinations of
aHVPμ , reviewed in detail in Ref. [4], are in strong tension
(about 4 standard deviations) with the experimental deter-
mination of aμ. On the other hand, lattice determinations of
(partial) contributions to aHVPμ , obtained without any
reference to the experimental measurements of R, are in
much better agreement with the aμ experiment [5].
The focus of this Letter is R, smeared with Gaussian

kernels, and not aμ.—The experiments that measure R are
radically different from those that measure aμ, and more-
over, R is an energy-dependent probe of the theory while aμ
is natively a low-energy observable. For these reasons a
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ID L3 × T a fm aL fm mπ GeV
B64 643 × 128 0.07957(13) 5.09 0.1352(2)

(C. Alexandrou et al. 2022)

Strange-strange connected contribution:
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The two totally unrelated methods are in exceptional agreement
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Conclusions

. Supervised deep learning techniques can be used to extract smeared hadronic spectral densities from
lattice correlators in a model-independent way

. The systematic errors can be reliably quantified and the predictions can be used in phenomenological
analyses

. Admittedly, the procedure that we propose to do might end up to be numerically demanding and can
possibly be simplified, but there is no free-lunch in physics!

. Here we taught a lesson to a broad audience of learning-machines but the subject of the lesson is just a
particular topic

. The idea of teaching systematically to a broad audience of machines is much more general and can
be used to estimate reliably the systematic errors in many other applications
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A classroom where the students are replaced by robots (DALL·E)

THANK YOU FOR THE ATTENTION!
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New unsmeared ρ(E) generated with Nb = 1024

Collect and combine the different responses from the
ensembles of machines
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Final result
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The systematic uncertainties associated withN <∞ are not negligible



Wait, wait, wait ... distributions cannot be represented by the Chebyshev basis
Right! But we are interested in smeared spectral densities
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Everything should work as long as σ � peaks separation (validated!)



Noise injection via true lattice data covariance matrix

Cnoisy ∈ G
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Hyperparameters tuning

Learning rate scheduler η(e) = θ(e−25)η(e−1)

1+e·4×10−4

Mini-Batch Gradient Descent algorithm. Batch Size = 32 + Adam optimizer
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Performance in extreme cases
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The error increases according to the increase of the severity of the inverse problem



Impact of the number of input time slices
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The performance of the neural network gets to a saturation point around NT ∼ 40



Noise level
We model the noise using the covariance matrix of the two-point vector strange-strange correlation function
produced by ETM Collaboration on B64 ensemble
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We choose Chebyshev polynomials as basis functions

ρ(E) = θ(E − E0)
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