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Staggered fermions
Quick recap

staggered fermionic action

SF [χ, χ̄] = a4
∑
n∈Λ

χ̄(n)

 4∑
µ=1

ηµ(n)
Uµ(n)χ(n + µ̂)− U†

µ(n − µ̂)χ(n − µ̂)

2a
+ mχ(n)



arithmetic intensity

I =
570 FLOP

792 B
= 0.72 FLOP/B.
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Kokkos C++ Performance Portability EcoSystem1

writing modern C++ applications in a hardware agnostic way

configured with CMake
defaults to best memory layout for target architecture

LayoutLeft (column-major) for GPUs
LayoutRight (row-major) for CPUs

1Christian R. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era”. In: IEEE Transactions on
Parallel and Distributed Systems 33.4 (2022), pp. 805–817. DOI: 10.1109/TPDS.2021.3097283.
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Kokkos C++ Performance Portability EcoSystem1

writing modern C++ applications in a hardware agnostic way
configured with CMake
defaults to best memory layout for target architecture

LayoutLeft (column-major) for GPUs
LayoutRight (row-major) for CPUs

C++ code
using complex t = Kokkos::complex<float>;
using Site = Kokkos::View<complex t ****[3];
using Link = Kokkos::View<complex t ****[4][3][3];

1Christian R. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era”. In: IEEE Transactions on
Parallel and Distributed Systems 33.4 (2022), pp. 805–817. DOI: 10.1109/TPDS.2021.3097283.
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Message Passing Interface (MPI)

communicate between processes to scale on massive parallel machines

extend lattice by 2 in each direction to use for communication
only use this extension if MPI is used in direction of this hypercube face

split of this faces as halo and compute independly from the bulk
use a continuous memory region as buffer for MPI

otherwise apply periodic boundary conditions by recalculating the site indices
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Message Passing Interface (MPI)

communicate between processes to scale on massive parallel machines
extend lattice by 2 in each direction to use for communication
only use this extension if MPI is used in direction of this hypercube face

split of this faces as halo and compute independly from the bulk
use a continuous memory region as buffer for MPI

otherwise apply periodic boundary conditions by recalculating the site indices

C++ code
using BulkSpace t = Kokkos::DefaultExecutionSpace;
using HaloSpace t = Kokkos::DefaultExecutionSpace;

BulkSpace t BulkExecSpace = BulkSpace t();
HaloSpace t HaloExecSpcae = HaloSpace t();

Kokkos::fence(); // barrier for all execution spaces
HaloExecSpcae.fence(); //barrier for only one execution space
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Kernel Algorithm

Kernel (Input: Uµ, χin Output: χout)

n ∈ Λ
for i ← 1,2,3 do

t ← 0
for j ← 1,2,3 do

for µ← 1,2,3,4 do
t ← t + Uµ(n)ij ∗ χin(p(n + µ̂))j

t ← t − Uµ(p(n − µ̂))ji ∗ χin(p(n − µ̂))j

end for
end for
χout,i ← t

end for

p() calculates the correct n according to periodic boundaries
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AMD Ryzen 7742 (x86 CPU, Dual Socket)
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JURECA DC @ JSC, Kokkos 3.6, AOCC 3.2, Clang 13.0, GCC 11.2
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Fujitsu A64FX (ARM CPU)
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CTE-ARM @ BSC, Kokkos 3.6, GCC 11.1, Clang 14.0
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Nvidia A100 (GPU)
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JURECA DC @ JSC, Kokkos 3.6, GCC 11.2, NVHPC 22.1, CUDA 11.5
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Nvidia A100 (GPU) - Full node
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JURECA DC @ JSC, Kokkos 3.6, GCC 11.2, NVHPC 22.1, CUDA 11.5, PSMPI 5.5.0

Member of the Helmholtz Association 31st July, 2023 Slide 8 13



AMD MI250 (GPU) - one Graphics Compute Die (GCD)
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JURECA DC Evaluation Platform @ JSC, Kokkos 3.6, Clang 14.0, ROCm 5.2
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AMD MI250 (GPU) - Full node
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JURECA DC Evaluation Platform @ JSC, Kokkos 3.6, Clang 14.0, ROCm 5.2, OpenMPI 4.1.2
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Nvidia A100 vs. AMD MI250 (GPU)
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Nvidia H100 PCIe (GPU)
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JURECA DC Evaluation Platform @ JSC, Kokkos 4.0, GCC 11.3, CUDA 12.0, LaunchBounds (384,1)
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Nvidia H100 PCIe vs. Nvidia A100 (GPU)
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JURECA DC Evaluation Platform @ JSC, Kokkos 4.0, GCC 11.3, CUDA 12.0, LaunchBounds (384,1)
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END
Thank you for your attention!
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