Investigation of two-particle contributions to nucleon matrix elements

Constantia Alexandrou, Giannis Koutsou, Yan Li, Marcus Petschlies, Ferenc Pittler

Background

Nucleon structure: nucleon matrix elements

 $\frac{\langle 0|O_N(t_{\rm sink})J(t_{\rm ins})\bar{O}_N(0)|0\rangle}{\langle 0|O_N(t_{\rm sink})\bar{O}_N(0)|0\rangle} \xrightarrow{\text{all } t \text{ well-separated}} \langle N|J|N\rangle$

Time-dependence indicates contamination from excited states

Lowest excited state is a Nucleon-Pion state

Simulation details

Ensembles	Flavors	$N_L^3 \times N_T$	m_{π} (MeV)	$L \ ({\rm fm})$	$m_{\pi} L$	$N_{\rm cfg} \times N_{\rm src}$
cA211.53.24	2 + 1 + 1	$24^3 \times 48$	346	2.27	3.99	300×120
cA2.09.48	2	$48^3 \times 96$	131	4.50	2.98	300×60

- Twisted-mass lattice
- Interpolating operators used: $O_p; \quad O_{N\pi}^{1/2} = \sqrt{2/3} \ O_{n\pi^+} \sqrt{1/3} \ O_{p\pi^0}$
- Generalized eigenvalue problem (GEVP)
 - Do GEVP on 2pt functions
 - Use the results to improve 3pt functions
- Based on: https://github.com/cylqcd/PLEGMA https://github.com/lattice/quda/

Diagrams: 2pt functions

Diagrams: 3pt functions

Generalized eigenvalue problem (GEVP)

➢ GEVP starts with 2pt functions:

$$C_{ij}(t) = \langle 0 | O_i(t) O_j^{\dagger}(0) | 0 \rangle$$

GEVP returns eigenvalues and eigenvectors:

$$C_{ij}(t)v_j^n = \lambda^n(t, t_0)C_{ij}(t_0)v_j^n$$

$$\lambda^n(t, t_0) = e^{-E_n(t-t_0)}, \quad v_j^n O_j^{\dagger}(0) |0\rangle = |n\rangle$$

➤ We determine the optimal interpolating field: $O'_N |0\rangle = (O_N + v^N_{N\pi} O_{N\pi}) |0\rangle \propto |N\rangle$

 $\succ \text{ We can use it to improve matrix elements:} \\ \frac{\langle 0|O_N J \bar{O}_N |0\rangle}{\langle 0|O_N \bar{O}_N |0\rangle} \xrightarrow{\text{GEVP improving}} \frac{\langle 0|O'_N J \bar{O}'_N |0\rangle}{\langle 0|O'_N \bar{O}'_N |0\rangle}$

GEVP improvement on 3pt functions

 $\frac{\langle 0|O_N J\bar{O}_N|0\rangle}{\langle 0|O_N \bar{O}_N|0\rangle} \xrightarrow{\text{GEVP improving}} \frac{\langle 0|O'_N J\bar{O}'_N|0\rangle}{\langle 0|O'_N \bar{O}'_N|0\rangle}$ $\langle 0|O'_N J\bar{O}'_N|0\rangle = \langle 0|(O_N - x O_{N\pi})J(\bar{O}_N - x \bar{O}_{N\pi})|0\rangle$ $= \langle 0|O_N J\bar{O}_N|0\rangle - \mathbf{x} \langle 0|\mathbf{O}_N \mathbf{J}\bar{\mathbf{O}}_{N\pi}|0\rangle - x \langle 0|O_{N\pi} J\bar{O}_N|0\rangle + x^2 \langle 0|O_{N\pi} J\bar{O}_{N\pi}|0\rangle$

 $\begin{array}{l} \langle 0|O_N J \bar{O}_{N\pi} |0\rangle = \left[\langle N| + x \langle N\pi| \right] J \left[y |N\rangle + |N\pi\rangle \right] & \text{Up to time-} \\ = \mathbf{y} \langle N|J|N\rangle + \mathbf{1} \langle N|J|N\pi\rangle + \mathbf{xy} \langle N\pi|J|N\rangle + \mathbf{x} \langle N\pi|J|N\pi\rangle & \text{dependent terms} \end{array}$

	$\langle N J N angle$	$\langle N J N\pi \rangle$	$\langle N\pi J N \rangle$	$\langle N\pi J N\pi \rangle$
$\langle 0 O_N J \bar{O}_N 0\rangle$	1	x	x	x^2
$-\mathbf{x}\left\langle 0 \mathbf{O}_{\mathbf{N}}\mathbf{J}\mathbf{\bar{O}}_{\mathbf{N}\pi} 0\right\rangle$	$-\mathbf{x} * \mathbf{y}$	$-\mathbf{x} * 1$	$-\mathbf{x} * \mathbf{x}\mathbf{y}$	$-\mathbf{x} * \mathbf{x}$
$-x\left<0 O_{N\pi}J\bar{O}_N 0\right>$	-xy	$-x^2y$	-x	$-x^{2}$
$x^2 \langle 0 O_{N\pi}J\bar{O}_{N\pi} 0\rangle$	x^2y^2	x^2y	x^2y	x^2
$\langle 0 O_N'J\bar{O}_N' 0\rangle$	$(1-xy)^2$	0	0	0

GEVP improvement on 3pt functions

- $\blacktriangleright \text{ We have: } \langle 0|O_N J \bar{O}_N |0\rangle \quad \langle 0|O_N J \bar{O}_{N\pi} |0\rangle$
- > When $\vec{q} = (0,0,0)$, by symmetry: $\langle 0|O_N J \bar{O}_{N\pi}|0\rangle \xrightarrow{\text{when } \vec{q} = (0,0,0)} \langle 0|O_{N\pi} J \bar{O}_N|0\rangle$
- So we can include three rows

	$\langle N J N angle$	$\langle N J N\pi\rangle$	$\langle N\pi J N \rangle$	$\langle N\pi J N\pi \rangle$
$\langle 0 O_{N}Jar{O}_{N} 0 angle$	1	x	x	\mathbf{x}^2
$-\mathbf{x}\left<0 \mathbf{O}_{\mathbf{N}}\mathbf{J}\mathbf{\bar{O}}_{\mathbf{N}\pi} 0\right>$	$-\mathbf{x}\mathbf{y}$	$-\mathbf{x}$	$-\mathbf{x^2y}$	$-x^2$
$-\mathbf{x}\left\langle 0 \mathbf{O}_{\mathbf{N}\pi}\mathbf{J}\mathbf{\bar{O}}_{\mathbf{N}} 0\right\rangle$	$-\mathbf{x}\mathbf{y}$	$-\mathbf{x^2y}$	$-\mathbf{x}$	$-x^2$
$x^2 \langle 0 O_{N\pi}J\bar{O}_{N\pi} 0\rangle$	x^2y^2	x^2y	x^2y	x^2
$\langle 0 O_N'J\bar{O}_N' 0\rangle$	$1-2\mathrm{xy}$	$-x^2y$	$-x^2y$	$-\mathbf{x}^2$

GEVP improvement on 3pt functions: $J = S^{u+d} = \overline{u}u + \overline{d}d; \quad \overrightarrow{q} = (0, 0, 0)$

Different color & shape denote different t_{sink}
 No significant improvement

GEVP improvement on 3pt functions: $J = A_3^{u-d} = \overline{u}\gamma_5\gamma_3u - \overline{d}\gamma_5\gamma_3d; \quad \overrightarrow{q} = (0, 0, 0)$

Similar behavior with the previous case

GEVP improvement on 3pt functions

- $\succ \text{ We have: } _{\langle 0|O_N J\bar{O}_N|0\rangle} \quad \langle 0|O_N J\bar{O}_{N\pi}|0\rangle$
- \succ $\vec{q} ≠ (0,0,0)$
- > We can include two rows

	$\langle N J N\rangle$	$\langle N J N\pi \rangle$	$\langle N\pi J N \rangle$	$\langle N\pi J N\pi \rangle$
$\langle 0 O_{N}J\bar{O}_{N} 0\rangle$	1	x	x	\mathbf{x}^2
$-\mathbf{x}\left\langle 0 \mathbf{O_N}\mathbf{J}\mathbf{\bar{O}_{N\pi}} 0\right\rangle$	$-\mathbf{x}\mathbf{y}$	$-\mathbf{x}$	$-\mathbf{x^2y}$	$-x^2$
$-x\left\langle 0 O_{N\pi}J\bar{O}_{N} 0 ight angle$	-xy	$-x^2y$	-x	$-x^{2}$
$x^2 \left< 0 O_{N\pi} J \bar{O}_{N\pi} 0 \right>$	x^2y^2	x^2y	x^2y	x^2
$\langle 0 O_N'J\bar{O}_N' 0\rangle$	1 - xy	0	$\mathbf{x} - \mathbf{x}^2 \mathbf{y}$	0

GEVP improvement on 3pt functions: $J = A_4^{u-d} = \overline{u}\gamma_5\gamma_4u - \overline{d}\gamma_5\gamma_4d; \quad \overrightarrow{q} = (0, 0, 1)$

Significant improvement compared with the two previous cases

GEVP improvement on 3pt functions: $J = P^{u-d} = \overline{u}\gamma_5 u - \overline{d}\gamma_5 d; \quad \vec{q} = (0, 0, 1)$

> $N\pi$ is one source of contamination

GEVP on 3pt: dominant contribution

M is the dominant diagram in both ensembles
Agree with Regensburg group

Barca, Bali, Collins PRD 107, L051505 (2023)

16/17

Summary

- Studied two ensembles:
 - $N_L^3 = 24^3$ and $m_{\pi} = 346$ MeV
 - $N_L^3 = 48^3$ and $m_{\pi} = 131$ MeV
- Performed a GEVP analysis for the 2pt functions
- Projected 3pt functions using the optimized eigenvectors

Outlook

- Improve statistics
- Do the remaining 3pt functions: $\frac{\langle 0|O_{N\pi}JO_N|0\rangle}{\langle 0|O_{N\pi}J\bar{O}_{N\pi}|0\rangle}$
- Include more states in the GEVP
 - Other momenta $(\vec{p}_{tot} \text{ and } \vec{q})$ •
 - Other two-particle states? •

Με τη συγχρηματοδότηση της Ευρωπαϊκής Ένωσης

EXCELLENCE/0421/0043

Isospin symmetry

Isospin symmetry

$$\langle 0|O_{n\pi^+}\bar{O}_{n\pi^+}|0\rangle \xrightarrow{t \to \infty} \begin{bmatrix} \langle 0|O_{n\pi^+}\bar{O}_{p\pi^0}|0\rangle \times (-\sqrt{2})\\ \langle 0|O_{p\pi^0}\bar{O}_{p\pi^0}|0\rangle \times 2 \end{bmatrix}$$

