Nonperturbative renormalization of HQET operators in Position Space

LATTICE2023 at FERMILAB

Joshua Lin
joshlin@mit.edu

Will Detmold
Stefan Meinel

Massachusetts Institute of Technology
The University of Arizona
To connect bare lattice quantities to the continuum, we need to renormalize our operators. There are many different approaches:

- **Bare Lattice Matrix Elements**
- **Nonperturbative renormalisation**
- **Lattice Perturbation Theory**
- **Intermediate Scheme**
 - RI-(s)MOM Schrödinger Functional
 - Position-space scheme
- **Matching in the continuum**
- **MS-renormalized matrix elements**

Goal: Matching of HQET operators in position-space
Position Space Schemes (X-space)

- Renormalization conditions in momentum space
 (RI-(s)MOM)
 \[Z_Γ(p | δ_Γ | p) \bigg|_{p_1^2=p_2^2=q^2=-μ^2} = \langle p | δ | p \rangle \bigg|_\text{tree} \]

- Renormalization conditions in position space
 \[Z_Γ^2(δ_Γ(x)δ_Γ(0)) \bigg|_{x^2=-μ^2} = \langle δ_Γ(x)δ_Γ(0) \rangle \bigg|_\text{tree} \]

The good

- Easy to implement!
- Gauge invariant
 - no gauge fixing required
 - no Gribov copies
 - no gauge non-invariant operators

The bad

- Similar window problem to other schemes:
 \[a \ll x_0 \ll Λ_{\text{QCD}}^{-1} \]
- Mixing often requires three (or more) point-function calculations to have enough constraints
- Perturbative calculations contain more loops.
 e.g. \(O(α_S) \) matching for four-quark operators requires 3-loop calculations
HQET four-quark operators of interest

When studying inclusive decay rates of B-hadrons, an OPE leads to four-quark operators:

\[O_1^q = \left(\bar{q} \gamma_\mu P_L q \right) \left(q \gamma_\mu P_L \bar{q} \right) \]
\[O_2^q = \left(\bar{q} P_L q \right) \left(q P_R \bar{q} \right) \]
\[O_3^q = \left(\bar{Q} \gamma_\mu P_L q \right) \left(q \gamma_\mu P_L \bar{Q} \right) \]
\[O_4^q = \left(\bar{Q} P_L q \right) \left(q P_R \bar{Q} \right) \]

We’ll focus for now on isospin non-singlet operators, \(O_u - O_d \). These are protected from power-divergent mixings arising from eye contractions of the light quark.

(These are the enhanced “Spectator Effects”)

The four-quark operators showing up in B-meson mixing are similar, \(\Delta B = 2 \) rather than \(\Delta B = 0 \). The matching of these operators in the continuum will not be a lot of additional work.
Survey

X-space dimension-3 light bilinears

- $O(\alpha_s^3)$ matching for scalar, vector bilinears
 K. G. Chetyrkin, A. Maier [hep-ph/1010.1145]

- Wilson fermions
 V. Gimenez et al [hep-lat/0406019]
 S. Calì et al [hep-lat/2003.05781]

- $N_f = 2$, twisted-mass fermions
 ETMC [hep-lat/1207.0628]

- $N_f = 2 + 1$, Domain-wall fermions
 JLQCD [hep-lat/1604.08702]

X-space other bilinears

- Energy Momentum Tensor (dimension-4)
 Cyprus group [hep-lat/2102.00858, hep-lat/2212.07730]

- Staple-shaped operators
 C. Alexandrou et al [hep-lat/2305.11824]

- Heavy-light Bilinears
 P. Korcyl et al [hep-lat/1512.00069]

X-space Four-quark operators

- $\Delta s = 1$, $K \to \pi\pi$ operators
 matching between 3 and 4-flavor theories.
 M. Tomii et al [hep-lat/1811.11238,1901.04107]

Matching for X-space ↔ MS has not yet been calculated for four-quark operators
The scheme

* Requires three-point renormalization condition:

\[
\frac{\langle J_a(x_0) \sigma_j^{(X)}(\mu = x_0^{-1}, 0) J_a^\dagger(-x_0) \rangle}{\langle J_a(x_0) J_a^\dagger(-x_0) \rangle} = \frac{\langle J_a(x_0) \sigma_j^{(0)}(0) J_a^\dagger(-x_0) \rangle}{\langle J_a(x_0) J_a^\dagger(-x_0) \rangle} =: T_{j,a}
\]

Measured on the lattice

\[
M_{i,a} = \frac{\langle J_a(x_0) \sigma_i^{(0)}(0) J_a^\dagger(-x_0) \rangle}{\langle J_a(x_0) J_a^\dagger(-x_0) \rangle} = Z_{ij}(\mu = x_0^{-1}) \frac{\langle J_a(x_0) \sigma_j^{(X)}(\mu = x_0^{-1}, 0) J_a^\dagger(-x_0) \rangle}{\langle J_a(x_0) J_a^\dagger(-x_0) \rangle} = Z_{ij}(x_0) T_{j,a}
\]

\[
Z_{ij} = M_{i,a} T_{a,j}^{-1}
\]

* Ratios are nice because Z-factors of source cancels, and linear divergence of Wilson line cancels.

* Sources need to be chosen so that the tree level matrix is invertible, otherwise don’t have enough constraints on the Z-matrix. Need baryonic sources, otherwise the colour-mixed operators will have vanishing matrix elements.

\[
O_q^3 = \left(\bar{q} T_a \gamma_\mu P_L q \right) \left(\bar{q} T_a \gamma_\nu P_L Q \right) \quad O_q^4 = \left(\bar{q} T_a P_L q \right) \left(\bar{q} T_a P_R Q \right)
\]
How to integrate?

* $O(\alpha_s)$ position-space correlation functions break up into building blocks:

\[
\int d^d p_L \, d^d p_R \, d^d k \, e^{i p_L \cdot x_L - i p_R \cdot x_R} \, p_R^\beta (p_R - k)^\beta (p_L - k)^\mu p_L^\mu \\
\int d^d p_L \, d^d p_R \, d^d k \, e^{i k \cdot x_L - i k \cdot x_R} \, p_R^\beta (p_R - k)^\beta (p_L - k)^\mu p_L^\mu \\
\int d^d k \left(\frac{\partial}{\partial k_\mu} \cdot p_\sigma \right) f(k) = 0
\]

Integration by parts

Two-loop master integrals

* In practice, in-house codes written in Mathematica to handle this

TRACER; M. Jamin, M. Lautenbacher
Master integrals and blocks

★ Master Integrals look like:

\[T_{LL}(x_L, x_R; n_1, n_2, n_3) = \int \frac{d^d p_L d^d p_R}{(2\pi)^{2d}} \frac{e^{i p_L x_L} e^{-i p_R x_R}}{(-p_L^2)^{n_1} (-p_R^2)^{n_2} (-p_L - p_R)^2)^{n_3}} \] (agrees with hep-lat/2102.00858)

\[= -\Gamma(\frac{d}{2} - n_1) \Gamma(d - n_1 - n_2 - n_3) \Gamma(n_2) \Gamma(n_3) \frac{2 F_1}{(2\pi)^{d/2} 4^{n_1 + n_2 + n_3} \pi^d} \int_0^1 dx (1 - x_1)^{-d/2 + n_1 + n_2 - 1} x_1^{-d/2 + n_1 + n_3 - 1} \frac{d}{2} - n_1, d - n_1 - n_2 - n_3, \frac{d}{2} - \frac{(x_L - x_R)^2}{x_1 (1 - x_1) x_R^2} \]

\[T_{HH}(x_L, x_R; n_1, n_2, n_3) = \int \frac{d^d p_L d^d p_R}{(2\pi)^{2d}} \frac{e^{i p_L x_L} e^{-i p_R x_R}}{(v \cdot p_L)^{n_1} (v \cdot p_R)^{n_2} (-p_L - p_R)^2)^{n_3}} \]

\[= \frac{1}{4^{n_1 + n_2 + n_3}} \frac{\Gamma(\frac{d}{2} - n_3)}{\Gamma(n_1 + n_2)} 2 F_1 \left(n_1, d - 2n_3, n_1 + n_2, \frac{v \cdot (x_L - x_R)}{v \cdot x_L}\right) (-iv \cdot (x_R - x_L))^{-1 + n_1 + n_2} (-v \cdot x_L)^{-d/2 + n_1 + n_3} \delta_1(v \cdot (x_L - x_R)) \theta(v \cdot (x_R - x_L) > 0) \]

★ Building blocks look like:

\[\sum_{-t_0}^{t_0} \frac{k}{\gamma} \frac{n_1}{\gamma} \frac{m_2}{\gamma} \left[\begin{array}{c} -1 \\ 32\pi^2 \end{array} \right] + \left[\begin{array}{c} 10 \log 2 - 3 \log \pi - 3 \gamma_E \\ 64\pi^2 \end{array} \right] (\gamma_a \gamma_b) + \left[\begin{array}{c} -1 \\ 128\pi^2 \end{array} \right] (\gamma_a \gamma_b) + \left[\begin{array}{c} 1 \\ -1 - 2 \log 2 + 3 \log \pi + 3 \gamma_E \\ 256\pi^2 \end{array} \right] (\gamma_a \gamma_b) \]

LATTICE2023 at FERMILAB
Joshua Lin joshlin@mit.edu
In the MS scheme at $O(\alpha_s)$, the operators mix in 2x2 sub-blocks. So as a check of our machinery, we can work in a scheme that forces this mixing structure, meaning we only need two sources in our X-space scheme:

$$Z_{2\times 2}^{(X)} = 1 + g^2(-\mu^2 x_0^2)^{\frac{1}{2}} \left(\frac{1}{2\pi c} + \frac{1}{-1} - \frac{1}{12\pi^2 c} \right) \left(\frac{24 + 9\gamma_E + 4\pi^2 - 18 \log 2 + 9 \log \pi}{36\pi^2} - \frac{51 + 18\gamma_E - 8\pi^2 - 36 \log 2 + 18 \log \pi}{432\pi^2} \right) \left(\frac{-3}{8\pi^2 c} + \frac{27 + 9\gamma_E + 28\pi^2 + 9 \log \pi - 18 \log 2}{288\pi^2} \right)$$

Important check: divergent parts match!

This scheme exploits the divergence structure at $O(\alpha_s)$, a full treatment requires four sources (in progress).
Future Prospects

Completed

☑ Master integrals and building blocks computed
 ☑ Cross-checks that three-point renormalizations of bilinears has correct divergent pieces

In progress

☐ Writing down matching coefficients for explicit choices of sources for $\Delta B = 0$ four-quark operators
☐ Investigating the window problem on RBC/UKQCD 2+1 Domain Wall fermion ensembles

Wishlist

☐ Writing down matching coefficients for all light four-quark operators
Thanks!