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1. Introduction

B \We consider SU(2) LGST (with fundamental scalar)
Action of SU(2) LGST (with fund. scalar):
.. B A i
SU,6] =5 >~ Retr (1 Uy pUsip UL +UEMUJ;,V) + % ;Re tr(1— 61U, ,16,4,.)

N, -
~w W

-

Sc|U] : gauge part Su[U,0] : scalar part
U., € SU(2): link variables, 6, e SU(2): (hormalized) scalar fields

3 : gauge coupling, 7 :scalar coupling
O, transforms as the fundamental representation of the gauge group SU(2).

This model has the SU(2),,.. % SU(2)g10pa SYmmetry:

Up = Ul = QU Q0 0,0, =0Q,0,0

where Q. € SU(2), 0., @ €SUQ), 00 -



B \Votivation

O

In case of fundamental scalar field — This talk
Confinement (8> 0,7 < 1) and Higgs (8> 1,7. <7 < )
regions are subregions of an analytically continued single

phase. The transition line starts from (3,v) = (c0,v.) does not

reach “analytic region” which connect these subregions.
[1] E. Fradkin and S. H. Shenker, Phys. Rev. D19, 3682 (1979),
[2] K. Osterwalder and E. Seiler, Annals Phys. 110, 440 (1978)

In case of adjoint scalar field — The next talk by Shibata

Confinement and Higgs regions are completely separated into
the two different phases by the continuous transition line.
The transition line has two endpoints, (3.7) = (c0,7.) and
(8,7) = (B¢, 00) .

[3] R. C. Brower et al., Phys. Rev. D25, 3319 (1982)
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B Motivation and Results
Re-examine the 4D SU(2) lattice gauge scalar theory (LGST) with fund. scalar field,

O We found the gauge-invariant composite operator of the original scalar field and
the new “color-direction field”, which enables to separate the confinement phase

and the Higgs phase completely and gauge-independently.

O We perform the numerical simulations for this model without any gauge fixing, and

found a new transition line:

 in the weak gauge coupling, it agrees with the conventional thermodynamical

transition line.
- in the strong gauge coupling, it divides the single confinement-Higgs phase into

two separate phases, confinement and the Higgs.




2. New transition line and Color-direction field

B Newly found transition line

O As the result of the numerical simulations for the
4D SU(2) LGST with fund. scalar, we found a new

transition line which separates confinement and

Higgs regions completely, without any gauge fixing.
(Red line in the right figure)

O This transition line is obtained in the gauge-

independent way by introducing the new composite conﬁnement

operator of the original scalar field and the new ,'

“color-direction field”, based on the gauge-covariant 00 ' =
| p

decomposition of the gauge field due to
Cho-Duan-Ge-Shabanov and Faddeev-Niemi.



B gauge-covariant decomposition of the gauge field

U, € SU(2) is gauge-covariantly decomposable: U, , =X, , Ve, (Xapu, Ve € SU(2))

(We required the transformations, X,,+ X, , = QX 00, Vi, V., =Q V.00, )

- This decomposition is given uniquely by solving the defining equations for the
“color-direction field” mn, € su(2) —u(1) with a unit :

D,[Ving =Vy mpypy —my Ve, =0, tr(ngX,,) =0
(We required the transformation, n, — n/, = Q,n. Q)

- For a given set of gauge fields {U, ..}, a set of color-direction fields {n.} is determined
as the configuration minimizing the reduction functional:
1
Frealns U] = 5 tr {(D#[U}nm)* (D#[U]nm)} =Y tr (1= nuUs e UL

€T, Hl
€T, €T,

+ Frea[n; U] has the same form as the Higgs action of SU(2) LGST (with adj. scalar)

(minimization of Frea[n; U] extracts the DOF of {n.} from the gauge fields {U. . })
[4] Kondo et al., Phys. Rep. 579, 1-226 (2015)



B construction of the scalar-color density <R>
- We required that 6, € SU(2) and n, € su(2) — u(1) transform as

~ ~ A

0, =0 =0,0,9, n,—n, =Qn,Q

where Q, € SU(2)
- Then it is possible to find a local quantity R, which has the global covariance:

local 7 4 = SU(Q),global .

R, :=0in,0,, R,— R, =QTRQ

- The spacetime average of R, also has the global covariance:

_._1 D —r_l Al I O 1 I O DO/
R._V;Rm, RHR—VZQ R, =0 V;Rm O = QRO

x

- Then there exists a non-trivial gauge invariant defined as

R=|Rl=\/SuRE), RoR=R

R also can be defined as the absolute value of the two eigenvalues of R.



3. Numerical simulation

B Setting for lattice simulation
o 8%-lattice, pseudo heat bath method, cold start (U, , =1, 6, =1)

For a point of the couplings (3,7),

O 5000 sweeps were discarded for thermalization, before sampling.

O Per 100 sweeps, a set of gauge and scalar configuration was sampled.
Total 100 samples were taken per point.

To determine a set of color-direction fields {n.} from a given set of {Us, .} numerically,
O F..q[n;U] is minimized by using the iterative method with over-relaxation.
O For searching the global optimal configuration, 10 trials are taken per point.

The above simulations were performed for 17 X 52=884 sets of parameter points (5, 7).
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B plaquette density <P>
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B Phase diagram
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4. Conclusion and outlook

We studied the new type of operator in the SU(2) LGST with fundamental scalar field.

B Combining the scalar field ©, and newly introduced “color-direction field” n,
(representing the gauge DOF) as the composite operator, we found the complete and
gauge-independent separation between the confinement phase and the Higgs phase.

B \\Ve performed the gauge-fixing-free numerical simulations and checked that there is a
new transition line which overlaps with the known thermodynamical transition line in the
weak gauge coupling, and divides a single confinement-Higgs phase into the two phases
in the weak gauge coupling.

Outlook:

B Physical meaning and implications of the new transition
(e.g. quark-hadron continuity, Schafer and Wilczek, 1999, ---)

B Relationship with the spontaneous breaking of the custodial SU(2)"gIO]Dal symmetry,
Nambu-Goldstone theorem (vs. Greensite and Matsuyama, 2020 ?)

B Improvement of the accuracy for the numerical simulation

B Extension to the case of LGST with SU(N) gauge group (N=3)

16
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