Symmetric Mass Generation in Lattice Gauge Theory

Simon Catterall (Syracuse) Goksu Can Toga (Syracuse) Nouman Butt (UIUC)

LATTICE 2023

Symmetric Mass Generation SMG

Typically mass associated with symmetry breaking

- Higgs mechanism in Standard Model
- Chiral symmetry breaking in QCD
- Gross Neveu model ...

Typically broken symmetries are chiral ...

Is this necessarily always the case ?

Counter examples

- 4 flavors of reduced staggered fermion with four fermion (4f) interactions. [Catterall et al. 1810.06117]
- Boundary fermions in Fidkowski-Kitaev model in (0+1) D (4f interactions) [Kitaev et al. 1008.4138]
- 3-4-5-0 model of (1+1) chiral fermions (6f interations) [Wang et al. 2202.12355]

Four reduced staggered fermions in 4D with D. Schaich [1810.06117]

 $G^2 < \epsilon^{abcd} \chi^a \chi^b \chi^c \chi^d >$

$$S = \sum_{x,\mu} \eta_{\mu}(x) \operatorname{Tr}(\chi(x) \Delta_{\mu}\chi(x) + \sum_{x} G \operatorname{Tr}(\phi_{+}\chi\chi) + \operatorname{Tr}(\phi_{+}^{2}) + \kappa \operatorname{Tr}(\phi_{+}\Box\phi_{+})$$

where χ^a in fundamental and ϕ^{ab}_+ in **3** of *SO*(4) ($\chi \equiv \overline{\chi}_+$ and χ_-) Key global Z_4 symmetry:

$$\chi(\mathbf{x})
ightarrow i\epsilon(\mathbf{x})\chi(\mathbf{x}) \quad \phi_+(\mathbf{x})
ightarrow -\phi_+(\mathbf{x})$$

SMG

 $< B > \neq 0 \rightarrow SSB \rightarrow$ fermion mass but breaks Z_4

No volume dependence in $\langle B \rangle$ or ϕ_+ as $m \rightarrow 0 \rightarrow$ no SSB

Peak χ_B shows transition near $\kappa = 0.05$ and G = 1.05 – observe correlation length ξ grows rapidly with volume ...

Conclusions

Likely continuous phase transition between massless and massive phases not associated with symmetry breaking/order parameter. New fixed point for interacting 4d fermions ...! Continuum interpretation ?

Topological defects ? - see Catterall et al. 1708.06715

Lots of previous lattice studies of Higgs-Yukawa models – all saw symmetry breaking. What new element distinguishes this model ?

ans: anomalies !

Anomaly constraints

't Hooft anomalies Obstruction to gauging global symmetries

$SMG \equiv trivial gapped theory in I.R$

Since anomalies are RG invariant and gapped theory can have no anomalies

→ all 't Hooft anomalies must cancel in U.V for SMG (Necessary but not sufficient condition)

What does this imply for staggered fermion model - Z₄ symmetry ?

Can add Z_4 link gauge fields to allow for local Z_4 . But fermion measure $\int d\chi^1 \dots d\chi^N$ locally invariant only if N = 4k

Thus to cancel 't Hooft anomaly for Z_4 requires multiples of four reduced fields or two regular staggered fields.

More on anomalies of staggered fermions

In absence of four fermi term the classical symmetry is U(1) corresponding to $\chi \to e^{i\alpha\epsilon(x)}\chi$

However this is broken to Z_4 by quantum effects

Proof: map staggered fermions to Kähler-Dirac fermions \to can be naturally formulated on general random triangulations of curved space. Can show that

$$Z
ightarrow e^{4lpha i} Z$$

on a lattice with topology of sphere.

Exact lattice fermion anomaly Only a Z_4 subgroup of staggered fermions remains non-anomalous after coupling to gravity

also: suggests four fermion interactions are not crucial for SMG ... (Catterall et al 1806.07845, 2101.01026, 2209.03828)

Why might SMG be important ?

Mirror models

One strategy to obtain chiral lattice gauge theories starts from a vector-like theory and uses eg strong Yukawa interactions to gap out say R-handed states.

This strategy failed in past because scalar fields pick up vevs associated with χ -symmetry breaking \rightarrow yields Dirac mass terms

SMG offers prospect of gapping unwanted states without generating such mass terms Indeed 3-4-5-0 model in Hamiltonian formalism gives an explicit example

Discrete 't Hooft anomaly structure of staggered fermions may also allow construction of mirror models for Z_4 symmetry. Remarkably naive continuum limit \rightarrow certain chiral theories

SMG without large Yukawa couplings

- *G* is perturbatively irrelevant. Previous SMG result depends on new non-perturbative physics/fixed pts.
- Can we use confinement to generate four fermion condensate for small *G* ?

Replace χ by 2x2 matrix ψ that transforms under $SU(2) \times SU(2)$

$$\psi \to G \psi H^{\dagger}$$

 ψ satisfies a reality condition: $\psi^{\dagger} = \sigma_2 \psi \sigma_2 \rightarrow \text{Tr}(\psi^{\dagger} \psi) = 0$ Gauge the $SU(2) \times SU(2)$ symmetry

Expect confinement. Does Z_4 remain unbroken with a four fermion condensate being formed instead of a bilinear ?

Simulations

 $\int D\chi e^{\chi^T D_U \chi} = Pf(D_U)$ where D_U is complex, antisymmetric matrix. For SU(N), N > 2 possesses a severe sign problem.

But for SU(2) we have $D_U^* = \sigma_2 D_U \sigma_2$. Hence

 $D_U \psi = \mu \psi$ then $D_U(\sigma_2 \psi) = \mu^*(\sigma_2 \psi)$

With antisymmetry \rightarrow eigenvalues form quartets $(\mu, \mu^*, -\mu, -\mu^*)$ guarantees that Pfaffian real positive Can be simulated using RHMC. (Catterall et al. 2111.01001)

Gauge theory with small Yukawa

Other bilinears ..

Continuum fields arise from 16 staggered fields in hypercube single site bilinear vanishes but maybe system condenses another bilinear eg $\sum_{\mu} \epsilon(x)\xi_{\mu}(x) \text{Tr}[\psi(x)U_{\mu}(x)\psi(x+\mu)V_{\mu}^{\dagger}(x)]$

Add such a term to action. Breaks shift symmetry $\psi(x) \rightarrow \xi_{\mu}(x)\psi(x + \mu)$

No sign of SSB as $m_1 \rightarrow 0$

Connection to continuum

(Naive) continuum fermion Ψ gotten from

$$\Psi = \sum_{b} \chi(x+b) \gamma^{b}$$

where $b = (b_1, ..., b_4)$ with $b_i = 0, 1$ span hypercube (spin-taste basis) and $\gamma^b = \gamma_1^{b_1} \gamma_2^{b_2} \cdots \gamma_4^{b_4}$ For reduced field $\chi_- = \frac{1}{2}(1 - \epsilon(x))\chi(x)$ Take Euclidean chiral basis for γ :

$$\Psi_{-}=\left(egin{array}{cc} {f 0} & \psi_{m R} \ \psi_{m L} & {f 0} \end{array}
ight)$$

To cancel anomaly need 4 fields – $\Psi \rightarrow \Psi^a$. Take group to be SU(4). Replace $\psi_R \rightarrow i\sigma_2 \psi_L^{*'}$

Global symmetries: $SU(4) \times SU(2) \times SU(2)$. Fermions live in $(4,2,1) \oplus (\bar{4},1,2) \leftarrow$ Pati-Salam GUT !

Summary

- Staggered fermions offer opportunities to realize SMG gapping all states without breaking symmetries.
- Necessary (but not sufficient) condition all (discrete) 't Hooft anomalies must cancel. Requires multiples of 4 reduced staggered fields. Exact lattice anomalies !
- Example of SMG in LGT that generates a four fermion condensate in its confining regime
- Extend symmetry SO(4) → SU(4) such a model can accommodate PS model.
- However SU(4) has a sign problem

Thank you !

Backup

Phase diagram SO(4) model:

U(1) anomaly for KD fermions

Map staggered fields to antisymmetric tensors ϕ^p where *p* labels number of non-zero *b*'s

$$\chi(\mathbf{x} + \mathbf{b}) \rightarrow \phi^{\mathbf{p}}_{\mathbf{b}_1 \dots \mathbf{b}_{\mathbf{p}}}$$

 $\overline{\phi}^{p} \phi^{p-1}$

Can place tensors on p-simplices in random triangulation. Action:

invariant under $\phi_i^{p} \rightarrow e^{i\alpha(-1)^{p}}\phi_i^{p}$ recognize $[(-1)^{p} \equiv \epsilon(x)]$ Measure

$$D\overline{\Phi}D\Phi = \prod_{p=0}^{D}\prod_{i}^{N_{p}} d\phi_{i}^{p} d\overline{\phi}_{i}^{p} \rightarrow e^{2i\alpha\sum_{p=0}^{D}N_{p}(-1)^{p}} D\overline{\Phi}D\phi$$

But $\sum_{\rho=0}^{D} N_{\rho} (-1)^{\rho} = \chi$ - Euler character. Thus Z not invariant on sphere where $\chi = 2$.