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Why distillation?

Good signal-to-noise ratio

• Most correlators: exponential fall-off of signal-to-noise

• Experience shows: smeared operators improve the signal by

increasing overlap on low-momentum modes

Reduce cost of spectroscopy calculations

• Only important degrees of freedom → lower-rank space

• Often good results require large variational bases of operators -

q̄q and multi-hadron operators → large amount of Wick contractions

→ reuse of propagators and operators desirable

Distillation addresses both of these
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Recap: smearing

Consider a single-meson operator:

OM = q̄Γiq
′

Smearing is the application of an operator � to the quark-fields:

˜̄q = �q̄

q̃′ = �q′

OM → ÕM = ˜̄qΓi q̃′

Objective:
Maximize 〈n|OM |0〉 for some low-lying state of interest |n〉.
Empirically Gaussian smearing shapes work well.

Desirable properties:

• Gauge-covariance

• Preservation of other symmetries

• Typically trivial action in time and spin
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Recap: distillation (1)

Gauge-covariant Laplace operator:

∇2
xy (t) = −6δxy +

3∑
j=1

(
Uj(x , t)δx+ĵ,y + U†j (x − ĵ , t)δx−ĵ,y

)
Gaussian (Jacobi) smearing:

J(t;σ, nσ) =
(
1 +

σ∇2(t)

nσ

)nσ
lim

nσ→∞
J(t;σ, nσ) = Q(t) exp

[
σΛ(t)

]
Q†(t)

Λ(t) is the diagonal matrix of eigenvalues of ∇2(t)

Distillation operator:

[
�(t)

]
xy

=
[
V (t)V †(t)

]
xy

=
N∑

k=1

v (k)
x (t)v (k)†

y (t)

V (t): first ND column vectors of Q(t); σ = 0
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Recap: distillation (2)

Some properties of �(t):

• acts in position- and colour space (trivial in time and spin)

•
[
�(t)

]2
= �(t) (projector)

• preserves translation-, rotation and gauge-symmetries

We can now compute correlation functions in distillation space:

• Meson correlator:

CM(t ′, t) = 〈q̄′(t ′)�(t)ΓB(t ′)�(t)q(t ′) q̄(t)�(t)ΓA(t)�(t)q′(t)〉
→ C conn.

M (t ′, t) = Tr
[
φB(t ′)τ(t ′, t)φA(t)τ(t, t ′)

]
.

• Distillation space objects:

φXαβ(t) = V †(t)ΓX
αβ(t)V (t) (elemental)

ταβ(t ′, t) = V †(t ′)M−1
αβ (t ′, t)V (t) (perambulator)
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The cost of Wick contractions

Meson 2-point function (connected piece):

C conn.
M (t, t′) = Tr

[
ΦB(t′)τ(t′, t)ΦA(t)τ(t, t′)

]
= ΦB

αβ(t′)ταᾱ(t′, t)ΦA
ᾱβ̄(t)τβ̄β(t, t′)

Computational effort? Produce temporaries:

ΦA′
ᾱβ(t, t′) = ΦA

ᾱβ̄(t)τβ̄β(t, t′) and ΦB ′
ᾱβ(t′, t) = ΦB

αβ(t′)ταᾱ(t′, t)

C conn.
M (t, t′) = ΦA′

ᾱβ(t, t′)ΦB ′
ᾱβ(t′, t)

→ O(N3
D)

Baryon: ΦB(1)′
ᾱβγ(t′, t) = ΦB

αβγ(t′)ταᾱ(t′, t), . . .

CB(t, t′) = Φ
B(3)

ᾱβ̄γ̄
(t′)ΦA

ᾱβ̄γ̄(t)

→ O(N4
D)

In general: O(N
(d+1)
D ) (for d-quark operator). Can we do better?
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Local basis of distillation space

Jacobi smearing preserves locality → find a local basis of distillation space

• Embed coarse grid G ⊂ Λ3 into lattice

• Place three gauge-covariant sources q(j) at every x ∈ G ; Qij = q
(j)
i

• These can be constructed from Laplacian eigenvector components

• Project to distillation space: W = �Q

→ bijective map:

f : D → G × C; i 7→ (xxx , c)

D = { 1, . . . ,ND }, C = { 1, 2, 3 }

• Various choices for coarse grid: cubic, face-centred, body-centred
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Unitary transformation to new basis

Basis transformation:

• A0 ≡ V †W = V †Q

⇔ VA0 = VV †W = W

• Would like unitary Â†Â = 1
and Ŵ ≡ V Â

Permutation-invariant orthogonalization:

• A(τ) with limτ→∞ A(τ)†A(τ) = 1
generated by

S(A) = 1
2 Tr[(I − AA†)2]

→ dA
dτ = ∂S

∂[A†]
= (I − AA†)A

• Solve numerically with A(0) = A0

• Â: fixed point of flow
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Sampling large sums

Consider sum of complex terms:

A =
N∑
i=1

ai

Draw a sample of indices S = (s1, s2, . . . , sn) with sj = i ∈ 1, . . . ,N with

probability pi and define the Hansen-Hurwitz estimator:

ÂHH =
1

n

∑
s∈S

as
ps
⇒ E[ÂHH] = A

which has the variance

Var[ÂHH] =
1

n

N∑
i=1

pi

∣∣∣∣ aipi − A

∣∣∣∣2
Variance-minimizing choice of weights: p∗i = |ai |/

∑
|ai |

Note: The variance is zero with this choice if all phases are the same
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Sparse elementals and weights

Apply to correlator C :

C → Ĉ =
1

n

∑
σ∈S

Cσ
pσ

• Ω: index space; σ ∈ Ω

• σ = (α, β, . . . , ᾱ, β̄, . . .)

→ Cσ = φAαβ...ταᾱτββ̄ . . . φ
B
ᾱβ̄...

(no summation)

• p∗σ = |Cσ|/
∑
σ |Cσ|

• Approximate:

p∗σ ≈ 〈|φAαβ...|〉〈|φBᾱβ̄...|〉/
∑
σ . . .

where 〈. . .〉 is the average over

configurations and time-slices
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Sparse contractions

Let’s look at baryon contraction again:

Φ
B(1)
ᾱβγ = ΦB

αβγταᾱ

Φ
B(2)

ᾱβ̄γ
= Φ

B(1)
ᾱβγτββ̄

Φ
B(3)

ᾱβ̄γ̄
= Φ

B(2)

ᾱβ̄γ
τγγ̄

C(t, t′) = Φ
B(3)

ᾱβ̄γ̄
ΦA
ᾱβ̄γ̄(t)

Apply sampling:

• φA and φB now sparse

• τ is dense

• Only run over indices contained in sample

• Important: “Look ahead”

- barred indices are also sparse!
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What is the cost?

Number of complex multiplications given by expected number of distinct

indices in sample:

ν̄s ≡ E[νs ] = E
[∑
σ∈Ω

I sσ
]

=
∑
σ∈Ω

πs
σ .

• πs
σ: inclusion probabilities,

∑
σ π

s
σ = n

• For sampling with replacement:

ν̄s = N −
∑
σ∈Ω

(1− pσ)n ≤ n

• In practice weak dependence on details of p

Consider Φ
B(1)
ᾱβγ = ΦB

αβγταᾱ:

→Full distribution for {α, β, γ }; “projected” distribution
∑
β̄,γ̄ pᾱβ̄γ̄ for { ᾱ }
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What can we hope to gain?

The additional variance VarHH Ĉ due to distillation-space sampling depends

strongly on the structure of the individual operators and their correlation.

• Spatial derivatives produce more tensor entries with large magnitudes

• Off-diagonal correlators 〈OiOj〉, i 6= j , tend to have larger variance

• The variance grows with the time-slice

→ Need to pick sample-size accordingly

(this is work in progress)

Best case:
n = O(ND) is sufficient

Cost for baryon contraction → O(N2
D) (vs. O(N4

D)!)

Expectation:
For compact operators the sample size needed to achieve constant variance

grows less-than exponentially in the dimension of the operators in distillation

space.
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Application

As a test case we compute

CN→N(t) = 〈ON(t)O†N(0)〉 and

C∆→∆(t) = 〈O∆(t)O†∆(0)〉 with

O
J=1/2
N =

(
NM ⊗ ( 1

2

−
)M ⊗ 1L=0,S

)J=
1
2

O
J=1/2
∆ =

(
∆S ⊗ ( 1

2

−
)M ⊗ D

[1]
L=1,M

)J=
1
2

• Follows HadSpec conventions1 for baryon

operators

• Product of flavour, spin and orbital angular

momentum representations

• Subscripts S and M indicate symmetric

and mixed-symmetric representations

• Overall anti-symmetric as required

(a) C∆→∆

(b) CN→N

1arXiv:1104.5152
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CN→N and C∆→∆: Results
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Summary and outlook

Summary:

• Locality in distillation space allows more efficient Wick contractions

• Method gives sensible results for baryons

• Promising potential especially for high-dimensional compact

operators (tetraquarks, ...)

Lots of room for improvements and further study:

• dependence of variance on operator structure and dimensionality

→ recipe to pick a sample size

• adaptive sample size across time slices

• blocked/stratified sampling?

• different grid embeddings

• infer sampling weights from symmetry (needed for large-d)

Ultimately: Application to large operator basis with GEV method
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Thank you! Questions?
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∆ weights
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Perambulator weights in local distillation
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