

Efficient computations of correlators with local distillation

LATTICE 2023, Fermilab Algorithms and Artificial Intelligence

Nicolas Lang*, Mike Peardon, Robert Edwards August $1^{\rm st}$ 2023

Good signal-to-noise ratio

- Most correlators: exponential fall-off of signal-to-noise
- Experience shows: smeared operators improve the signal by increasing overlap on low-momentum modes

Reduce cost of spectroscopy calculations

- $\bullet\,$ Only important degrees of freedom $\rightarrow\,$ lower-rank space
- Often good results require large variational bases of operators - $\bar{q}q$ and multi-hadron operators \rightarrow large amount of Wick contractions \rightarrow reuse of propagators and operators desirable

Distillation addresses both of these

Consider a single-meson operator:

$$\mathcal{O}_M = \bar{q} \Gamma_i q'$$

Smearing is the application of an operator \Box to the quark-fields:

$$egin{array}{ll} \widetilde{q} &= \Box ar{q} \ \widetilde{q'} &= \Box q' \ \mathcal{O}_M o \widetilde{\mathcal{O}}_M &= egin{array}{ll} \widetilde{q} \Gamma_i \widetilde{q'} \end{array}$$

Objective:

Maximize $\langle n | \mathcal{O}_M | 0 \rangle$ for some low-lying state of interest $| n \rangle$. Empirically Gaussian smearing shapes work well.

Desirable properties:

- Gauge-covariance
- Preservation of other symmetries
- Typically trivial action in time and spin

Gauge-covariant Laplace operator:

$$abla_{\mathrm{xy}}^2(t) = -6\delta_{\mathrm{xy}} + \sum_{j=1}^3 \left(U_j(x,t)\delta_{x+\hat{j},y} + U_j^\dagger(x-\hat{j},t)\delta_{x-\hat{j},y}
ight)$$

Gaussian (Jacobi) smearing:

$$J(t; \sigma, n_{\sigma}) = \left(1 + \frac{\sigma \nabla^{2}(t)}{n_{\sigma}}\right)^{n_{\sigma}}$$
$$\lim_{n_{\sigma} \to \infty} J(t; \sigma, n_{\sigma}) = Q(t) \exp\left[\sigma \Lambda(t)\right] Q^{\dagger}(t)$$

 $\Lambda(t)$ is the diagonal matrix of eigenvalues of $\nabla^2(t)$ Distillation operator:

$$\left[\Box(t)\right]_{xy} = \left[V(t)V^{\dagger}(t)\right]_{xy} = \sum_{k=1}^{N} v_{x}^{(k)}(t)v_{y}^{(k)\dagger}(t)$$

V(t): first N_D column vectors of Q(t); $\sigma = 0$

Some properties of $\Box(t)$:

- acts in position- and colour space (trivial in time and spin)
- $[\Box(t)]^2 = \Box(t)$ (projector)
- preserves translation-, rotation and gauge-symmetries

We can now compute correlation functions in distillation space:

• Meson correlator:

 $C_{\mathcal{M}}(t',t) = \langle \bar{q}'(t') \Box(t) \Gamma^{\mathcal{B}}(t') \Box(t) q(t') \ \bar{q}(t) \Box(t) \Gamma^{\mathcal{A}}(t) \Box(t) q'(t) \rangle$ $\rightarrow C_{\mathcal{M}}^{\text{conn.}}(t',t) = \operatorname{Tr} \left[\phi^{\mathcal{B}}(t') \tau(t',t) \phi^{\mathcal{A}}(t) \tau(t,t') \right] .$

• Distillation space objects:

$$\begin{split} \phi^{X}_{\alpha\beta}(t) &= V^{\dagger}(t) \Gamma^{X}_{\alpha\beta}(t) V(t) \text{ (elemental)} \\ \tau_{\alpha\beta}(t',t) &= V^{\dagger}(t') M^{-1}_{\alpha\beta}(t',t) V(t) \text{ (perambulator)} \end{split}$$

Meson 2-point function (connected piece):

$$\begin{split} C_{M}^{\text{conn.}}(t,t') &= \mathsf{Tr}\left[\Phi^{B}(t')\tau(t',t)\Phi^{A}(t)\tau(t,t')\right] \\ &= \Phi^{B}_{\alpha\beta}(t')\tau_{\alpha\bar{\alpha}}(t',t)\Phi^{A}_{\bar{\alpha}\bar{\beta}}(t)\tau_{\bar{\beta}\beta}(t,t') \end{split}$$

Computational effort? Produce temporaries: $\Phi^{A'}_{\bar{\alpha}\beta}(t,t') = \Phi^{A}_{\bar{\alpha}\bar{\beta}}(t)\tau_{\bar{\beta}\beta}(t,t')$ and $\Phi^{B'}_{\bar{\alpha}\bar{\beta}}(t',t) = \Phi^{B}_{\alpha\beta}(t')\tau_{\alpha\bar{\alpha}}(t',t)$

$$C^{\mathrm{conn.}}_{M}(t,t') = \Phi^{A'}_{\ ar{lpha}eta}(t,t') \Phi^{B'}_{\ ar{lpha}eta}(t',t)$$

 $\rightarrow \mathcal{O}(N_D^3)$ Baryon: $\Phi^{B(1)'}{}_{\bar{\alpha}\beta\gamma}(t',t) = \Phi^B_{\alpha\beta\gamma}(t')\tau_{\alpha\bar{\alpha}}(t',t), \dots$

$$C_B(t,t') = \Phi^{B(3)}_{\bar{\alpha}\bar{\beta}\bar{\gamma}}(t')\Phi^A_{\bar{\alpha}\bar{\beta}\bar{\gamma}}(t)$$

 $\rightarrow \mathcal{O}(N_D^4)$ In general: $\mathcal{O}(N_D^{(d+1)})$ (for *d*-quark operator). Can we do better? Jacobi smearing preserves locality \rightarrow find a local basis of distillation space

- Embed coarse grid $G \subset \Lambda_3$ into lattice
- Place three gauge-covariant sources q^(j) at every x ∈ G; Q_{ij} = q_i^(j)
- These can be constructed from Laplacian eigenvector components
- Project to distillation space: $W = \Box Q$ \rightarrow bijective map:

$$f: \mathcal{D} \to G \times \mathcal{C}; i \mapsto (\mathbf{x}, c)$$

 $\mathcal{D} = \{\,1, \ldots, N_D\,\},\, \mathcal{C} = \{\,1, 2, 3\,\}$

• Various choices for coarse grid: cubic, face-centred, body-centred

Basis transformation:

- $A_0 \equiv V^{\dagger}W = V^{\dagger}Q$ $\Leftrightarrow VA_0 = VV^{\dagger}W = W$
- Would like unitary $\hat{A}^{\dagger}\hat{A} = \mathbb{1}$ and $\hat{W} \equiv V\hat{A}$

Permutation-invariant orthogonalization:

- $A(\tau)$ with $\lim_{\tau \to \infty} A(\tau)^{\dagger} A(\tau) = 1$ generated by $S(A) = \frac{1}{2} \operatorname{Tr}[(I - AA^{\dagger})^2]$ $\rightarrow \frac{dA}{d\tau} = \frac{\partial S}{\partial [A^{\dagger}]} = (I - AA^{\dagger})A$
- Solve numerically with $A(0) = A_0$
- \hat{A} : fixed point of flow

(b) Scatter plot of $|\hat{w}^{(0)}(t=0)|$ (cut-off applied)

Consider sum of complex terms:

$$A = \sum_{i=1}^{N} a_i$$

Draw a sample of indices $S = (s_1, s_2, ..., s_n)$ with $s_j = i \in 1, ..., N$ with probability p_i and define the Hansen-Hurwitz estimator:

$$\hat{A}_{\mathsf{H}\mathsf{H}} = \frac{1}{n} \sum_{s \in S} \frac{a_s}{p_s} \Rightarrow \mathbb{E}[\hat{A}_{\mathsf{H}\mathsf{H}}] = A$$

which has the variance

$$\operatorname{Var}[\hat{A}_{\mathsf{HH}}] = \frac{1}{n} \sum_{i=1}^{N} p_i \left| \frac{a_i}{p_i} - A \right|^2$$

Variance-minimizing choice of weights: $p_i^* = |a_i| / \sum |a_i|$ Note: The variance is zero with this choice if all phases are the same Apply to correlator C:

$$C o \hat{C} = rac{1}{n} \sum_{\sigma \in S} rac{C_{\sigma}}{p_{\sigma}}$$

- Ω : index space; $\sigma \in \Omega$
- $\sigma = (\alpha, \beta, \dots, \bar{\alpha}, \bar{\beta}, \dots)$ $\rightarrow C_{\sigma} = \phi^{A}_{\alpha\beta\dots}\tau_{\alpha\bar{\alpha}}\tau_{\beta\bar{\beta}}\dots\phi^{B}_{\bar{\alpha}\bar{\beta}\dots}$ (no summation)
- $p_{\sigma}^* = |C_{\sigma}| / \sum_{\sigma} |C_{\sigma}|$
- Approximate:

 $\begin{array}{l} p_{\sigma}^{*}\approx \langle |\phi_{\alpha\beta\ldots}^{A}|\rangle \langle |\phi_{\bar{\alpha}\bar{\beta}\ldots}^{B}|\rangle /\sum_{\sigma}\ldots\\ \text{where }\langle\ldots\rangle \text{ is the average over configurations and time-slices} \end{array}$

(b) After unitary transformation

Fig: $\langle |\phi^{M}_{\alpha\beta}(p=0,t=0)| \rangle$ (derivative in x-direction) Let's look at baryon contraction again:

$$\begin{split} \Phi^{B(1)}_{\bar{\alpha}\beta\gamma} &= \Phi^B_{\alpha\beta\gamma}\tau_{\alpha\bar{\alpha}} \\ \Phi^{B(2)}_{\bar{\alpha}\bar{\beta}\gamma} &= \Phi^{B(1)}_{\bar{\alpha}\beta\gamma}\tau_{\beta\bar{\beta}} \\ \Phi^{B(3)}_{\bar{\alpha}\bar{\beta}\bar{\gamma}} &= \Phi^{B(2)}_{\bar{\alpha}\bar{\beta}\gamma}\tau_{\gamma\bar{\gamma}} \\ C(t,t') &= \Phi^{B(3)}_{\bar{\alpha}\bar{\beta}\bar{\gamma}}\Phi^A_{\bar{\alpha}\bar{\beta}\bar{\gamma}}(t) \end{split}$$

Apply sampling:

- $\phi^{\rm A}$ and $\phi^{\rm B}$ now sparse
- τ is dense
- Only run over indices contained in sample
- Important: "Look ahead"
 - barred indices are also sparse!

(b) Derivative in z-direction

Fig: $\langle |\phi^B_{\alpha\beta\gamma}(p=0,t=0)| \rangle$ (cut-offs applied in plots)

Number of complex multiplications given by expected number of distinct indices in sample:

$$ar{
u_s} \equiv \mathbb{E}[
u_s] = \mathbb{E}\left[\sum_{\sigma \in \Omega} I^s_\sigma\right] = \sum_{\sigma \in \Omega} \pi^s_\sigma \; .$$

- π_{σ}^{s} : inclusion probabilities, $\sum_{\sigma} \pi_{\sigma}^{s} = n$
- For sampling with replacement:

$$ar{
u}_s = N - \sum_{\sigma \in \Omega} (1 - p_\sigma)^n \leq n$$

• In practice weak dependence on details of p

Consider $\Phi^{\mathcal{B}(1)}_{\bar{\alpha}\beta\gamma} = \Phi^{\mathcal{B}}_{\alpha\beta\gamma}\tau_{\alpha\bar{\alpha}}$: \rightarrow Full distribution for { α, β, γ }; "projected" distribution $\sum_{\bar{\beta},\bar{\gamma}} p_{\bar{\alpha}\bar{\beta}\bar{\gamma}}$ for { $\bar{\alpha}$ } The additional variance $\operatorname{Var}_{HH} \hat{C}$ due to distillation-space sampling depends strongly on the structure of the individual operators **and** their correlation.

- Spatial derivatives produce more tensor entries with large magnitudes
- Off-diagonal correlators $\langle \mathcal{O}_i \mathcal{O}_j \rangle$, $i \neq j$, tend to have larger variance
- The variance grows with the time-slice

 \rightarrow Need to pick sample-size accordingly

(this is work in progress)

Best case: $n = \mathcal{O}(N_D)$ is sufficient Cost for baryon contraction $\rightarrow \mathcal{O}(N_D^2)$ (vs. $\mathcal{O}(N_D^4)$!)

Expectation:

For compact operators the sample size needed to achieve constant variance grows less-than exponentially in the dimension of the operators in distillation space.

Application

As a test case we compute $C_{N \to N}(t) = \langle \mathcal{O}_N(t) \mathcal{O}_N^{\dagger}(0) \rangle$ and $C_{\Delta \to \Delta}(t) = \langle \mathcal{O}_{\Delta}(t) \mathcal{O}_{\Delta}^{\dagger}(0) \rangle$ with

$$O_{N}^{J=1/2} = \left(N_{M} \otimes (\frac{1}{2}^{-})_{M} \otimes \mathbb{1}_{L=0,S}\right)^{J=\frac{1}{2}}$$
$$O_{\Delta}^{J=1/2} = \left(\Delta_{S} \otimes (\frac{1}{2}^{-})_{M} \otimes D_{L=1,M}^{[1]}\right)^{J=\frac{1}{2}}$$

- Product of flavour, spin and orbital angular momentum representations
- Subscripts *S* and *M* indicate *symmetric* and *mixed-symmetric* representations
- Overall anti-symmetric as required

(a) $C_{\Delta \rightarrow \Delta}$

¹arXiv:1104.5152

$C_{N \to N}$ and $C_{\Delta \to \Delta}$: Results

Summary and outlook

Summary:

- Locality in distillation space allows more efficient Wick contractions
- Method gives sensible results for baryons
- Promising potential especially for high-dimensional compact operators (tetraquarks, ...)

Lots of room for improvements and further study:

- dependence of variance on operator structure and dimensionality \rightarrow recipe to pick a sample size
- adaptive sample size across time slices
- blocked/stratified sampling?
- different grid embeddings
- infer sampling weights from symmetry (needed for large-d)

Ultimately: Application to large operator basis with GEV method

- M. Peardon et al., A Novel quark-field creation operator construction for hadronic physics in lattice QCD, 10.1103/PhysRevD.80.054506 (Original distillation paper)
- C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, 10.1103/PhysRevD.83.114505 (different approach using sampling but without locality)
- M. H. Hansen and W. N. Hurwitz, *On the Theory of Sampling from Finite Populations*, The Annals of Mathematical Statistics, Vol. 4
- R. Edwards et al., *Excited state baryon spectroscopy from lattice QCD*, 10.1103/PhysRevD.84.074508 (baryon operator construction)

Thank you! Questions?

(a) $s = \{\downarrow, \downarrow, \uparrow\}$ (b) $s = \{\uparrow, \uparrow, \downarrow\}$

Perambulator weights in local distillation

