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Why distillation?

Good signal-to-noise ratio

e Most correlators: exponential fall-off of signal-to-noise
e Experience shows: smeared operators improve the signal by
increasing overlap on low-momentum modes

Reduce cost of spectroscopy calculations

e Only important degrees of freedom — lower-rank space

e Often good results require large variational bases of operators -
gq and multi-hadron operators — large amount of Wick contractions
— reuse of propagators and operators desirable

Distillation addresses both of these



Recap: smearing

Consider a single-meson operator:
On = (_]r,'q/
Smearing is the application of an operator [ to the quark-fields:
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Objective:
Maximize (n|Owm|0) for some low-lying state of interest |n).

Empirically Gaussian smearing shapes work well.

Desirable properties:

e Gauge-covariance
e Preservation of other symmetries

e Typically trivial action in time and spin



Recap: distillation (1)

Gauge-covariant Laplace operator:

3
Vi (t) = =65 + > (Ui(x, )55, + U (x = j, )5, ;)

Jj=1

Gaussian (Jacobi) smearing:

J(t;o,ns) = (1 + %Z(t))nﬁ
lim J(t;0,n0) = Q(t)exp [oA(t)] Q'(t)
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A(t) is the diagonal matrix of eigenvalues of V?(t)
Distillation operator:

[O()],, = VOVID)], = 3 v (09 (2)
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V(t): first Np column vectors of Q(t); o =0



Recap: distillation (2)

Some properties of [J(t):
e acts in position- and colour space (trivial in time and spin)
. [D(t)]2 = [0(t) (projector)

e preserves translation-, rotation and gauge-symmetries
We can now compute correlation functions in distillation space:

e Meson correlator:
Cu(t', 1) = (g (£)B(OM(¢)D(t)a(t') ()OI (H)D(t)g' (1)
— Cpm™(t',t) = Tr [¢B() (¢, t) ()7 (¢, t)] .
e Distillation space objects:
x3(t) = VI Z5(t)V(t) (elemental)

Tap(t' 1) = VI(t)M_ (¢, t)V(t) (perambulator)



The cost of Wick contractions

Meson 2-point function (connected piece):

™ (¢, ) = Tr [0°()7 (¢, £)0" (£) (2, t')]
= P35t )Taa(t’, 1)55(t)735(t, 1)

Computational effort? Produce temporaries:
OA5a(t ) = DA (t)7a,(t, t) and BEL4(E 1) = OB () Tas(t', )

CEom™ (¢, ') = 5 4(t, )P L4(t 1)

— O(N3)
Baryon: @50, (t',t) = 08, (t')7aa(t’, ), ..

Co(t, t') = @20 (t')0%55(2)

— O(Np)
In general: (’)(N(Dd“)) (for d-quark operator). Can we do better?



Local basis of distillation space

Jacobi smearing preserves locality — find a local basis of distillation space

e Embed coarse grid G C Az into lattice

e Place three gauge-covariant sources q(j) at every x € G; Q,-J- = q,-U)

e These can be constructed from Laplacian eigenvector components

Project to distillation space: W =[Q
— bijective map:

f: D= GxC; i (x,0)

D={1,...,Np}, C={1,23}

Various choices for coarse grid: cubic, face-centred, body-centred



Unitary transformation to new basis

Basis transformation:
o A= VIW=VIQ
= VA = Wiw =w
e Would like unitary AtA=1
and W = VA

Permutation-invariant orthogonalization:

o A(7) with lim,_.o A(T)TA(7)
generated by
S(A) = 3 Tr[(/ — AATY?]
95
— P = 0 = (1 - AAA
e Solve numerically with A(0)

e A: fixed point of flow

= dl

:AO

aiiigyt ‘\“‘w\”

io(t = 0;y =z =0)
(e =0y =z =
£(x) = 0,041 exp[ ~0.031x¢

\
.
H

| —e—
0)] ot
]

% 1
i?fiii;

—15 ~10 -5 0

5 10 15

(a) Slice along £ of |w=%3)(t = 0)|

(b) Scatter plot of |w(®)

(cut-off applied)

005
004
003
002
001

(t=0)]



Sampling large sums

Consider sum of complex terms:

N
A= Ea,—
i=1

Draw a sample of indices S = (s1, %,...,s,) with s; =i € 1,..., N with
probability pi and define the Hansen-Hurwitz estimator:

A 1 £ A
AHH = n SEES . = E[AHH] =A
which has the variance
A 1 N a; 2
Var[AHH] = ; E Pi ;I, —A

i=1

Variance-minimizing choice of weights: p;' = |a;|/ > |ai]
Note: The variance is zero with this choice if all phases are the same



Sparse elementals and weights

Apply to correlator C:

Q: index space; 0 € Q

0= (avﬁv"'advga"')

= C, = QﬁéﬁmT(,@TBE e ¢g,é,,,
(no summation)

Py =G|/ 20 |Gl
Approximate:

ps ~ (I#as. {055 N/ o

where (...) is the average over
configurations and time-slices
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Sparse contractions

Let's look at baryon contraction again: |

B(l) _ 4B
(0] = d)a[qua&

apBy
o7 = o%lras
o78) =07

C(t,t') = #2905 (1)

Apply sampling:

e ¢* and ¢® now sparse

e T is dense
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Only run over indices contained in sample

Important: “Look ahead”
- barred indices are also sparse!

(b) Derivative in z-direction

Fig: (1955, (p=10,t =0)|)
(cut-offs applied in plots)
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What is the cost?

Number of complex multiplications given by expected number of distinct
indices in sample:

G=E]=E[> =) ;.

oeN oeQ

e 735 inclusion probabilities, > 75 =n
e For sampling with replacement:
DS:N—Z(l—pg)"gn
gEN

e In practice weak dependence on details of p

Consider ¢g(@1)( = ¢§3vmai

—Full distribution for { o, 8,7 }; “projected” distribution 35 - p5a+ for { &'}
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What can we hope to gain?

The additional variance Varpy € due to distillation-space sampling depends

strongly on the structure of the individual operators and their correlation.

e Spatial derivatives produce more tensor entries with large magnitudes
o Off-diagonal correlators (O0;0;), i # j, tend to have larger variance

e The variance grows with the time-slice

— Need to pick sample-size accordingly
(this is work in progress)

Best case:
n = O(Np) is sufficient

Cost for baryon contraction — O(N3) (vs. O(Np)!)

Expectation:
For compact operators the sample size needed to achieve constant variance

grows less-than exponentially in the dimension of the operators in distillation
space.
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Application

As a test case we compute
Cnon(t) = (On(t)O}(0)) and

Casa(t) = (Oa(t)OL(0)) with .:' .X.
O,{,Zlm = (NM ® (%7)M ® 1L:o,s)J:% % %
o - aseme ol =4 <0

(a) Casn

e Follows HadSpec conventions! for baryon

operators E
e Product of flavour, spin and orbital angular

momentum representations @
e Subscripts S and M indicate symmetric

and mixed-symmetric representations (b) Cnvosw

e Overall anti-symmetric as required

larXiv:1104.5152
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Ca_n: Results

N = N (WR vs. exact) A — A (WR vs. exact)
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Summary and outlook

Summary:

e |ocality in distillation space allows more efficient Wick contractions

e Method gives sensible results for baryons

e Promising potential especially for high-dimensional compact
operators (tetraquarks, ...)

Lots of room for improvements and further study:

e dependence of variance on operator structure and dimensionality
— recipe to pick a sample size

e adaptive sample size across time slices
e blocked/stratified sampling?
e different grid embeddings

e infer sampling weights from symmetry (needed for large-d)

Ultimately: Application to large operator basis with GEV method
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Thank you! Questions?



A weights

4x107° 4x10°°
35x10°° 35x10°°
3x107° 3x107°
25x107° 25x107°
2x10°° 2x10°°

" 15x107° K 1.5x107°
1x10°° 1x107°
5x1077 5x10°7
0 0

@ s={h41} (®) s = {1, 1,4}

17



Perambulator weights in local distillation
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