Vniversitat Bö́València

Efficient computations of correlators with local distillation
LATTICE 2023, Fermilab
Algorithms and Artificial Intelligence

Nicolas Lang*, Mike Peardon, Robert Edwards
August $1^{\text {st }} 2023$

Why distillation?

Good signal-to-noise ratio

- Most correlators: exponential fall-off of signal-to-noise
- Experience shows: smeared operators improve the signal by increasing overlap on low-momentum modes

Reduce cost of spectroscopy calculations

- Only important degrees of freedom \rightarrow lower-rank space
- Often good results require large variational bases of operators $\bar{q} q$ and multi-hadron operators \rightarrow large amount of Wick contractions \rightarrow reuse of propagators and operators desirable

Distillation addresses both of these

Recap: smearing

Consider a single-meson operator:

$$
\mathcal{O}_{M}=\bar{q} \Gamma_{i} q^{\prime}
$$

Smearing is the application of an operator \square to the quark-fields:

$$
\begin{aligned}
\tilde{\bar{q}} & =\square \bar{q} \\
\tilde{q}^{\prime} & =\square q^{\prime} \\
\mathcal{O}_{M} \rightarrow \tilde{\mathcal{O}}_{M} & =\tilde{\bar{q}} \Gamma_{i} \tilde{q}^{\prime}
\end{aligned}
$$

Objective:

Maximize $\langle\mathfrak{n}| \mathcal{O}_{M}|0\rangle$ for some low-lying state of interest $|\mathfrak{n}\rangle$.
Empirically Gaussian smearing shapes work well.
Desirable properties:

- Gauge-covariance
- Preservation of other symmetries
- Typically trivial action in time and spin

Recap: distillation (1)

Gauge-covariant Laplace operator:

$$
\nabla_{x y}^{2}(t)=-6 \delta_{x y}+\sum_{j=1}^{3}\left(U_{j}(x, t) \delta_{x+\hat{j}, y}+U_{j}^{\dagger}(x-\hat{j}, t) \delta_{x-\hat{j}, y}\right)
$$

Gaussian (Jacobi) smearing:

$$
\begin{aligned}
J\left(t ; \sigma, n_{\sigma}\right) & =\left(1+\frac{\sigma \nabla^{2}(t)}{n_{\sigma}}\right)^{n_{\sigma}} \\
\lim _{n_{\sigma} \rightarrow \infty} J\left(t ; \sigma, n_{\sigma}\right) & =Q(t) \exp [\sigma \Lambda(t)] Q^{\dagger}(t)
\end{aligned}
$$

$\Lambda(t)$ is the diagonal matrix of eigenvalues of $\nabla^{2}(t)$

Distillation operator:

$$
[\square(t)]_{x y}=\left[V(t) V^{\dagger}(t)\right]_{x y}=\sum_{k=1}^{N} v_{x}^{(k)}(t) v_{y}^{(k) \dagger}(t)
$$

$V(t)$: first N_{D} column vectors of $Q(t) ; \sigma=0$

Recap: distillation (2)

Some properties of $\square(t)$:

- acts in position- and colour space (trivial in time and spin)
- $[\square(t)]^{2}=\square(t)$ (projector)
- preserves translation-, rotation and gauge-symmetries

We can now compute correlation functions in distillation space:

- Meson correlator:

$$
\begin{aligned}
C_{M}\left(t^{\prime}, t\right) & =\left\langle\bar{q}^{\prime}\left(t^{\prime}\right) \square(t) \Gamma^{B}\left(t^{\prime}\right) \square(t) q\left(t^{\prime}\right) \bar{q}(t) \square(t) \Gamma^{A}(t) \square(t) q^{\prime}(t)\right\rangle \\
\rightarrow C_{M}^{\text {conn. }}\left(t^{\prime}, t\right) & =\operatorname{Tr}\left[\phi^{B}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \phi^{A}(t) \tau\left(t, t^{\prime}\right)\right] .
\end{aligned}
$$

- Distillation space objects:

$$
\begin{aligned}
\phi_{\alpha \beta}^{X}(t) & =V^{\dagger}(t) \Gamma_{\alpha \beta}^{X}(t) V(t) \quad \text { (elemental) } \\
\tau_{\alpha \beta}\left(t^{\prime}, t\right) & =V^{\dagger}\left(t^{\prime}\right) M_{\alpha \beta}^{-1}\left(t^{\prime}, t\right) V(t) \quad \text { (perambulator) }
\end{aligned}
$$

The cost of Wick contractions

Meson 2-point function (connected piece):

$$
\begin{aligned}
C_{M}^{\text {conn. }}\left(t, t^{\prime}\right) & =\operatorname{Tr}\left[\Phi^{B}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{A}(t) \tau\left(t, t^{\prime}\right)\right] \\
& =\Phi_{\alpha \beta}^{B}\left(t^{\prime}\right) \tau_{\alpha \bar{\alpha}}\left(t^{\prime}, t\right) \Phi_{\bar{\alpha} \bar{\beta}}^{A}(t) \tau_{\bar{\beta} \beta}\left(t, t^{\prime}\right)
\end{aligned}
$$

Computational effort? Produce temporaries:

$$
\Phi_{\bar{\alpha} \beta}^{A^{\prime}}\left(t, t^{\prime}\right)=\Phi_{\bar{\alpha} \bar{\beta}}^{A}(t) \tau_{\bar{\beta} \beta}\left(t, t^{\prime}\right) \text { and } \Phi_{\bar{\alpha} \beta}^{B^{\prime}}\left(t^{\prime}, t\right)=\Phi_{\alpha \beta}^{B}\left(t^{\prime}\right) \tau_{\alpha \bar{\alpha}}\left(t^{\prime}, t\right)
$$

$$
C_{M}^{\text {conn. }}\left(t, t^{\prime}\right)=\Phi_{\bar{\alpha} \beta}^{A^{\prime}}\left(t, t^{\prime}\right) \Phi_{\bar{\alpha} \beta}^{B^{\prime}}\left(t^{\prime}, t\right)
$$

$\rightarrow \mathcal{O}\left(N_{D}^{3}\right)$
Baryon: $\Phi^{B(1)^{\prime}}{ }_{\bar{\alpha} \beta \gamma}\left(t^{\prime}, t\right)=\Phi_{\alpha \beta \gamma}^{B}\left(t^{\prime}\right) \tau_{\alpha \bar{\alpha}}\left(t^{\prime}, t\right), \ldots$

$$
C_{B}\left(t, t^{\prime}\right)=\Phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{B(3)}\left(t^{\prime}\right) \Phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{A}(t)
$$

$\rightarrow \mathcal{O}\left(N_{D}^{4}\right)$
In general: $\mathcal{O}\left(N_{D}^{(d+1)}\right)$ (for d-quark operator). Can we do better?

Local basis of distillation space

Jacobi smearing preserves locality \rightarrow find a local basis of distillation space

- Embed coarse grid $G \subset \Lambda_{3}$ into lattice
- Place three gauge-covariant sources $q^{(j)}$ at every $x \in G ; Q_{i j}=q_{i}^{(j)}$
- These can be constructed from Laplacian eigenvector components
- Project to distillation space: $W=\square Q$
\rightarrow bijective map:

$$
\begin{gathered}
f: \mathcal{D} \rightarrow G \times \mathcal{C} ; i \mapsto(x, c) \\
\mathcal{D}=\left\{1, \ldots, N_{D}\right\}, \mathcal{C}=\{1,2,3\}
\end{gathered}
$$

- Various choices for coarse grid: cubic, face-centred, body-centred

Unitary transformation to new basis

Basis transformation:

- $A_{0} \equiv V^{\dagger} W=V^{\dagger} Q$

$$
\Leftrightarrow V A_{0}=V V^{\dagger} W=W
$$

- Would like unitary $\hat{A}^{\dagger} \hat{A}=\mathbb{1}$ and $\hat{W} \equiv V \hat{A}$

Permutation-invariant orthogonalization:

- $A(\tau)$ with $\lim _{\tau \rightarrow \infty} A(\tau)^{\dagger} A(\tau)=\mathbb{1}$ generated by

$$
\begin{aligned}
& S(A)=\frac{1}{2} \operatorname{Tr}\left[\left(I-A A^{\dagger}\right)^{2}\right] \\
& \rightarrow \frac{d A}{d \tau}=\frac{\partial S}{\partial\left[A^{\dagger}\right]}=\left(I-A A^{\dagger}\right) A
\end{aligned}
$$

- Solve numerically with $A(0)=A_{0}$
- Â: fixed point of flow

(a) Slice along \hat{x} of $\left|\hat{w}^{(i=0,3)}(t=0)\right|$

(b) Scatter plot of $\left|\hat{w}^{(0)}(t=0)\right|$ (cut-off applied)

Sampling large sums

Consider sum of complex terms:

$$
A=\sum_{i=1}^{N} a_{i}
$$

Draw a sample of indices $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with $s_{j}=i \in 1, \ldots, N$ with probability p_{i} and define the Hansen-Hurwitz estimator:

$$
\hat{A}_{H H}=\frac{1}{n} \sum_{s \in S} \frac{a_{s}}{p_{s}} \Rightarrow \mathbb{E}\left[\hat{A}_{H H}\right]=A
$$

which has the variance

$$
\operatorname{Var}\left[\hat{A}_{\mathrm{HH}}\right]=\frac{1}{n} \sum_{i=1}^{N} p_{i}\left|\frac{a_{i}}{p_{i}}-A\right|^{2}
$$

Variance-minimizing choice of weights: $p_{i}^{*}=\left|a_{i}\right| / \sum\left|a_{i}\right|$
Note: The variance is zero with this choice if all phases are the same

Sparse elementals and weights

Apply to correlator C:

$$
C \rightarrow \hat{C}=\frac{1}{n} \sum_{\sigma \in S} \frac{C_{\sigma}}{p_{\sigma}}
$$

- Ω : index space; $\sigma \in \Omega$
- $\sigma=(\alpha, \beta, \ldots, \bar{\alpha}, \bar{\beta}, \ldots)$
$\rightarrow C_{\sigma}=\phi_{\alpha \beta \ldots}^{A} \tau_{\alpha \bar{\alpha}} \tau_{\beta \bar{\beta}} \ldots \phi_{\bar{\alpha} \bar{\beta} \ldots}^{B}$
(no summation)
- $p_{\sigma}^{*}=\left|C_{\sigma}\right| / \sum_{\sigma}\left|C_{\sigma}\right|$
- Approximate:
$p_{\sigma}^{*} \approx\langle | \phi_{\alpha \beta \ldots}^{A} .| \rangle\langle | \phi_{\bar{\alpha} \bar{\beta} \ldots . .}^{B}| \rangle / \sum_{\sigma} \ldots$ where $\langle\ldots\rangle$ is the average over configurations and time-slices

(a) Before unitary transformation

(b) After unitary transformation

Fig: $\langle | \phi_{\alpha \beta}^{M}(p=0, t=0)| \rangle$ (derivative in x-direction)

Sparse contractions

Let's look at baryon contraction again:

$$
\begin{aligned}
\Phi_{\bar{\alpha} \beta \gamma}^{B(1)} & =\Phi_{\alpha \beta \gamma}^{B} \tau_{\alpha \bar{\alpha}}^{B} \\
\Phi_{\bar{\alpha} \bar{\beta} \gamma}^{B(2)} & =\Phi_{\bar{\alpha} \beta \gamma}^{B(1)} \tau_{\beta \bar{\beta}} \\
\Phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{B(3)} & =\Phi_{\bar{\alpha} \bar{\beta} \gamma}^{B(2)} \tau_{\gamma \bar{\gamma}} \\
C\left(t, t^{\prime}\right) & =\Phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{B(3)} \Phi_{\bar{\alpha} \bar{\beta} \bar{\gamma} \bar{\gamma}}^{A}(t)
\end{aligned}
$$

(a) No derivative

(b) Derivative in z-direction

Fig: $\langle | \phi_{\alpha \beta \gamma}^{B}(p=0, t=0)| \rangle$ (cut-offs applied in plots)

What is the cost?

Number of complex multiplications given by expected number of distinct indices in sample:

$$
\overline{\nu_{s}} \equiv \mathbb{E}\left[\nu_{s}\right]=\mathbb{E}\left[\sum_{\sigma \in \Omega} I_{\sigma}^{s}\right]=\sum_{\sigma \in \Omega} \pi_{\sigma}^{s}
$$

- π_{σ}^{s} : inclusion probabilities, $\sum_{\sigma} \pi_{\sigma}^{s}=n$
- For sampling with replacement:

$$
\bar{\nu}_{s}=N-\sum_{\sigma \in \Omega}\left(1-p_{\sigma}\right)^{n} \leq n
$$

- In practice weak dependence on details of p

Consider $\Phi_{\bar{\alpha} \beta \gamma}^{B(1)}=\Phi_{\alpha \beta \gamma}^{B} \tau_{\alpha \bar{\alpha}}$:
\rightarrow Full distribution for $\{\alpha, \beta, \gamma\}$; "projected" distribution $\sum_{\bar{\beta}, \bar{\gamma}} p_{\bar{\alpha} \bar{\beta} \bar{\gamma}}$ for $\{\bar{\alpha}\}$

What can we hope to gain?

The additional variance $\operatorname{Var}_{H H} \hat{C}$ due to distillation-space sampling depends strongly on the structure of the individual operators and their correlation.

- Spatial derivatives produce more tensor entries with large magnitudes
- Off-diagonal correlators $\left\langle\mathcal{O}_{i} \mathcal{O}_{j}\right\rangle, i \neq j$, tend to have larger variance
- The variance grows with the time-slice
\rightarrow Need to pick sample-size accordingly
(this is work in progress)
Best case:
$n=\mathcal{O}\left(N_{D}\right)$ is sufficient
Cost for baryon contraction $\rightarrow \mathcal{O}\left(N_{D}^{2}\right)$ (vs. $\mathcal{O}\left(N_{D}^{4}\right)$!)

Expectation:

For compact operators the sample size needed to achieve constant variance grows less-than exponentially in the dimension of the operators in distillation space.

Application

As a test case we compute

$$
\begin{aligned}
& C_{N \rightarrow N}(t)=\left\langle\mathcal{O}_{N}(t) \mathcal{O}_{N}^{\dagger}(0)\right\rangle \text { and } \\
& C_{\Delta \rightarrow \Delta}(t)=\left\langle\mathcal{O}_{\Delta}(t) \mathcal{O}_{\Delta}^{\dagger}(0)\right\rangle \text { with }
\end{aligned}
$$

$$
\begin{aligned}
& O_{N}^{J=1 / 2}=\left(N_{M} \otimes\left(\frac{1}{2}^{-}\right)_{M} \otimes 1_{L=0, S}\right)^{J=\frac{1}{2}} \\
& O_{\Delta}^{J=1 / 2}=\left(\Delta_{S} \otimes\left(\frac{1}{2}^{-}\right)_{M} \otimes D_{L=1, M}^{[1]}\right)^{J=\frac{1}{2}}
\end{aligned}
$$

- Follows HadSpec conventions ${ }^{1}$ for baryon operators
- Product of flavour, spin and orbital angular momentum representations

(a) $C_{\Delta \rightarrow \Delta}$
- Subscripts S and M indicate symmetric and mixed-symmetric representations

(b) $C_{N \rightarrow N}$
- Overall anti-symmetric as required

[^0]
$C_{N \rightarrow N}$ and $C_{\Delta \rightarrow \Delta}$: Results

Summary and outlook

Summary:

- Locality in distillation space allows more efficient Wick contractions
- Method gives sensible results for baryons
- Promising potential especially for high-dimensional compact operators (tetraquarks, ...)

Lots of room for improvements and further study:

- dependence of variance on operator structure and dimensionality \rightarrow recipe to pick a sample size
- adaptive sample size across time slices
- blocked/stratified sampling?
- different grid embeddings
- infer sampling weights from symmetry (needed for large-d)

Ultimately: Application to large operator basis with GEV method

References

- M. Peardon et al., A Novel quark-field creation operator construction for hadronic physics in lattice QCD, 10.1103/PhysRevD.80.054506 (Original distillation paper)
- C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice $Q C D$, 10.1103/PhysRevD.83.114505 (different approach using sampling but without locality)
- M. H. Hansen and W. N. Hurwitz, On the Theory of Sampling from Finite Populations, The Annals of Mathematical Statistics, Vol. 4
- R. Edwards et al., Excited state baryon spectroscopy from lattice QCD, 10.1103/PhysRevD.84.074508 (baryon operator construction)

Thank you! Questions?

Δ weights

(a) $s=\{\downarrow, \downarrow, \uparrow\}$

(b) $s=\{\uparrow, \uparrow, \downarrow\}$

Perambulator weights in local distillation

[^0]: ${ }^{1}$ arXiv:1104.5152

