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Outline

1. Why is model averaging useful?


2. Model averaging basics


3. Improved information criteria (arXiv:2208.14983)


4. Data subset selection - what penalty? 
(arXiv:2305.19417)
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•Example 1: (g-2) HVP intermediate window (see talk by 
S. Lahert, Tue @ 2:10 PM)


•2160 fit variations - discretization, finite volume, mass 
corrections…model average gives a final combined 
estimate + error bar.

(Fermilab/HPQCD/MILC collaborations, arXiv:2301.0874)
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Two-exponential “mock correlator”model truth, fit to single exponential

Panels: 4 x different draws of mock data

Model average 
agrees well with 
true ground-state

Ex. 1: tmin averaging (toy data)

!39• Example 2: synthetic data (fit 1 state to 2-state 
model truth.)


• Instead of selecting tmin by hand, compute 
model probability for each choice and average 
together!  (Data cuts as model choice.)

(EN and W. Jay, arXiv:2008.01069)
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• Some history: we didn’t bring model 
averaging to lattice, we “added the B” 
(Bayesian MA), found new ICs, and tried to 
clarify statistical derivations/details.


• Several early variations of model averaging/
variation appear in lattice papers: Y. Chen et 
al. ’04, BMW ’08, HPQCD ’08, FNAL/MILC 
’14, BMW ’14…however, many old papers 
use ad hoc averaging prescriptions.


• First use of AIC for lattice is BMW ’15; see 
also CalLat ’18, ’20, Rinaldi et al. ’19.  (More 
refs in our paper, including statistics papers 
back to the ‘70s.)


• First use of AIC with data penalty is BMW 
’21 (although I will argue for a corrected 
version of their formula here.)

4

[BMW ’08]: (BMW collaboration, Science 322 (2008), arXiv:0906.3599)

[FNAL/MILC ’14]: (FNAL/MILC collaboration, PRD 90 (2014), arXiv:1407.3772)
[CalLat ’18]: (CalLat collaboration, Nature 558 (2018), arXiv:1805.12130)

[HPQCD ’08]: (HPQCD collaboration, PRD 78 (2008), arXiv:0807.1687)

[Y. Chen et al ’04]: arXiv:hep-lat/0405001
[BMW ’14]: PRD 90 (2014), arXiv:1310.3626 
[BMW ’15]: Science 347 (2015), arXiv:1406.4088 
[Rinaldi et al. ’19]: PRD 99 (2019), arXiv:1901.07519 
[CalLat ’20]: PRD 102 (2020), arXiv:2005.04795 
[BMW ’21]: Nature 593 (2021), arXiv:2002.12347 
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Bayesian model averaging: key ideas
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<latexit sha1_base64="q9nbc+hN3R02b6q8I8fqZyLKzek=">AAACKHicbZDLSgMxFIYz9VbrbdSlm2AR6qbMqKgbsagLN8UK9gKdMmTStA1NMkOSEcrYx3Hjq7gRUaRbn8S0nYW2Hgh8/P85nJw/iBhV2nFGVmZhcWl5JbuaW1vf2Nyyt3dqKowlJlUcslA2AqQIo4JUNdWMNCJJEA8YqQf967FffyRS0VA86EFEWhx1Be1QjLSRfPvSY0h0GYF30JNTuoCeirlfhnOWX/Zg4kkOIzkslOETvDn07bxTdCYF58FNIQ/Sqvj2u9cOccyJ0JghpZquE+lWgqSmmJFhzosViRDuoy5pGhSIE9VKJocO4YFR2rATSvOEhhP190SCuFIDHphOjnRPzXpj8T+vGevOeSuhIoo1EXi6qBMzqEM4Tg22qSRYs4EBhCU1f4W4hyTC2mSbMyG4syfPQ+2o6J4Wj+9P8qWrNI4s2AP7oABccAZK4BZUQBVg8AxewQf4tF6sN+vLGk1bM1Y6swv+lPX9A7X8pIQ=</latexit>

hOi =
X

M

hOiM pr(M |D)

• Asymptotically correct model weights are given by 
the (Bayesian) Akaike information criterion (AIC):  

• Bayesian model averaging: obtain any 
expectation value as a weighted average

(sketch adapted from S. Konishi and G. Kitagawa, Information Criteria 
and Statistical Modeling, Springer Series in Statistics, 2008)

<latexit sha1_base64="2euEsptcxsv2BUfVvkr228ENKF0="></latexit>

�2 log pr(M |D) = �2 log pr(M) + BAIC

BAIC = �̂2(a⇤) + 2k

(EN and W. Jay, arXiv:2008.01069)

• Note that this applies at the level of expectation 
values.  In particular, for mean and variance we find:

average stat. error model-variation systematic

• This is not the same as taking a weighted average of 
variances (first term), or taking the variance of the 
weighted f(a*).

pr(M) is model prior prob - unless you know what this 
is, take it to be uniform and ignore it.
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Understanding the penalty term
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• Looking at the (Bayesian) Akaike information 
criterion (AIC) again: (yes, this is the correct 
Bayesian formula, no explicit prior χ2!)
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(sketch adapted from S. Konishi and G. Kitagawa, Information Criteria 
and Statistical Modeling, Springer Series in Statistics, 2008)

• “Occam’s razor” penalty term +2k, where k = # 
of model parameters.  


• Penalty emerges naturally from theoretical 
considerations as asymptotic bias correction.

<latexit sha1_base64="2euEsptcxsv2BUfVvkr228ENKF0="></latexit>

�2 log pr(M |D) = �2 log pr(M) + BAIC

BAIC = �̂2(a⇤) + 2k

• Briefly: sample a* is an unbiased estimator for true 
parameter aT.  But fluctuations of a* above and below 
aT both overestimate likelihood (underestimate χ2.)  
Correction of +2 (per dimension of a) —> +2k.

(EN and W. Jay, arXiv:2008.01069)
(EN and J. Sitison, arXiv:2208.14983)
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Improved information 
criteria
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(EN and J. Sitison, arXiv:2208.14983)
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Using the Kullback-Leibler divergence
• KL divergence (“relative entropy”) gives a path to Bayesian information criteria*.  Basic definition:
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• Second term proportional to -log[pr(M|D)].  This is non-parametric, good - data should 
determine parameters.  But there are multiple ways to obtain the above from a parametric model!


• Three options are natural and give interesting ICs:

(S. Zhou, Bayesian model selection in terms of Kullback-Leibler discrepancy, PhD thesis, Columbia, 2011) 
(S. Zhou, arXiv:2009.09248)

(“plug-in”)

BAIC

(“posterior average”)

(“posterior predictive”)

BPIC

PPIC

(EN and J. Sitison, arXiv:2208.14983)

(sample size N -> ∞)
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Complete formulas

• Various g, H, T, Σ are all tensors of derivatives of chi-squared functions - see our paper 2208.14983, sec. 
IV.  Numerical code available in Python + JAX (gradients/JIT compilation), although the code is not 
polished - just companion code for our paper.


• The above formulas are approximate, NLO in large-N expansion (N = data sample size.)  PPIC subset 
penalty is approximately +2dC plus 1/N corrections.  BPIC has larger bias from posterior avg.


• We advocate use of optimal truncation, which replaces NLO —> LO when NLO terms are too large.  
(Fixes a potential numerical problem with log(…) in PPIC.)
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https://github.com/jwsitison/improved_model_avg_paper

https://github.com/jwsitison/improved_model_avg_paper
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Numerical results: fixed data
• Quadratic model truth, extract constant 

term a0.


• Left: fits to polynomials of degree μ.  Extra 
parameters are penalized, moreso for BPIC.
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• Right: MA vs. sample size log(N).  BPIC does slightly 
better in general, similar to fixed quadratic model.


• (This is sort of a special case since the “true model” 
is nested within the more complex μ>2 models…)
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Numerical results: data selection
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• BPIC cuts aggressively - 
often overly so (bias-
variance tradeoff!)  But it 
does fairly well when fitting 
the true model or with lots of 
data.


• PPIC is more robust against 
noise, otherwise performing 
similarly to BAIC (no 
excessive bias)


• BAIC is reliable and simplest 
to compute; we advocate 
PPIC generally, but nothing 
wrong with AIC!
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Numerical results: data selection (2)

• Scaling results vs. N, similar 
conclusions to previous slide: 
we prefer PPIC, robust results 
and tends to give smaller error 
than BAIC, particularly w/noise


• BPIC has smallest error but can 
be too aggressive, particularly 
for subset selection.


• See paper for many more 
numerical results, including 
tests on real LQCD nucleon 
data (courtesy of JLab/W&M/
MIT/LANL)

12
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Data subset selection: 
which penalty?

13

(EN and J. Sitison, arXiv:2305.19417)
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Two approaches to subset selection
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(EN and J. Sitison, arXiv:2305.19417)
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• A common part of lattice 
analysis is data cutting: “what 
[tmin, tmax] should I fit my two-
point correlator over?”


• Partition data into kept and cut 
[yK, yC] of size (dK, dC).  Compute 
relative model weights, average!


• “Perfect model method”: Keep 
all data.  yC fit to a model with 
χ2=0; bias correction gives +2dC 
penalty.


• “Subspace method”: Discard 
data in cut partition.  
Recompute total KL divergence, 
gives +dC penalty.
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(EN and W. Jay, arXiv:2008.01069)

(BMW collab, Nature 593 (2021), arXiv:2002.12347)
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Comparing the two methods
• We focus on AIC for simplicity (and since subspace proposal is only computed for AIC.)


• We argue that AIC (subspace) is subtly flawed.  By discarding data completely and re-
computing the KL divergence, information is thrown away.  This leads to inflated errors 
(with no corresponding bias reduction).


• Aside from the conceptual argument, we prove the identity:

15

• This behavior is (mildly) pathological - the subspace AIC will never choose to fit all of 
the data over some of the data (asymptotically.)  Errors are increased as fits with data 
cuts are under-penalized.
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(linear fit)

(constant fit) BAIC (perf) 
BAIC (subset)

• Toy numerical example: 
model truth is linear, 
 
 

• For constant fit, both 
criteria are similar; χ2 is 
dominant.


• For linear fit (“true 
model”), both averages 
are right, but subset 
under-penalizes cutting 
so has larger error.

(EN and J. Sitison, arXiv:2305.19417)

• Below: “grand average” 
(both models @ all tmin) 
vs. sample size log(N).


• Both ICs agree well w/
model truth for all N; 
generically larger errors 
for BAIC (subset)
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Summary
• Model averaging is a powerful and simple technique for dealing with analysis choices 

and associated systematic errors.  Not a replacement for full Bayesian treatment (see 
talk by J. Frison, this session!), but easy to “plug in” to existing analysis chains.


• Bayesian + KL divergence perspective suggests two new ICs: 


• PPIC is more robust against noise and performs well in all tests.  


• BPIC uses Occam’s Razor more aggressively, smaller error at the price of larger 
bias.


• All (N -> ∞) roads lead to the (B)AIC, which is simple and effective. 


• Data subset selection can also be done (“perfect model” construction.)  Use the 
penalty of +2dC for AIC, or analogous penalty formulas for other ICs.

17
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Backup slides
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Tips/tricks/FAQs
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Q: When should the “model prior” pr(M) be used?


A: Use if you believe (before seeing data) that one model is more likely.  (e.g., weight an EFT model over 
an ad hoc one.).


Do not use pr(M) to penalize complex models - AIC bias term already does this!


Do use pr(M) to deal with classes of similar models.  E.g., if you are fitting 20 versions of chiral 
perturbation theory and one completely distinct model, you might set pr(M) = 1/40 for the variations, so 
that pr(chiPT) = pr(other model) = 1/2.

Q: How do I use model averaging with strongly-correlated data?


A: “100% correlation” is built-in: all pr(M|D) are computed with the same, fixed data D.  No adjustment needed!


For data subset selection, correlations between cut and kept data can complicate life, particularly for BPIC or 
PPIC; see our paper 2208.14983 for methods.
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Tips/tricks/FAQs
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Q: How can I use model averaging with bootstrap/jackknife?


A: No modification needed!  Bootstrap and jackknife just give better estimates of expectation values <O>M; 
same MA formulas apply, with same information criteria.


(Using bootstrap to compute ICs/bias directly is an interesting direction for future work!)

Q: Help, my BMA results look weird/I don’t believe the MA errors!


A: Model averaging represents a bias-variance tradeoff; accounting for model choice uncertainty generally 
gives higher variance, but lower bias (your results are more likely to be right.) The discreteness of BMA can 
give strange-looking behavior, such as *increased* error when more data are added.


You should take this seriously, as long as you trust all of the inputs!  (“Garbage in, garbage out…”)
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The Kullback-Leibler divergence
• KL divergence: “relative entropy” between PDFs, true model MT vs. candidate model Mμ.

21

• KL = 0 if the PDFs are equal, positive definite otherwise.  Find the “closest” distribution to 
prMT by maximizing the magnitude of the second term!

• Introduce model parameters a, and this leads to familiar results:

sample log-likelihood, i.e. -χ2/2

• e.g. finding best-fit point a* = minimization of KL divergence (“max likelihood”.)  Same likelihood 
function gives model probability weights, via Bayes theorem:  pr(M|D) ~ pr(D|M).
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χ2, dof, and subset selection
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• For a bad fit with large Ndof and 1 < χ2 < 2, we can have AICsub >> 0 but 
AICperf << 0 (lower AIC is preferred.)  Is this a problem?


• Example by explicit construction in appendix B of paper, but favoring a 
“bad fit” over a “good fit” in this way requires that a large amount of data 
are cut for the “good fit”.  Rewrite AICperf to see explicitly that the difference 
is still just data cutting penalty:

• Rewrite both forms of AIC in terms of usual number of 
degrees of freedom, Ndof=dK-k:

(EN and J. Sitison, arXiv:2305.19417)
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Asymptotic bias
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• When constructing any statistical estimator, one typically 
worries about bias, defined as follows: for distribution prT(z) 
with property ξ(z), given a finite sample {y} of size N and 
estimator X({y}),

• In other words, when averaged over the true distribution 
(i.e. over many independent samples), a non-zero bias 
means the estimator is wrong.  We can further define 
asymptotic bias as:

• Asymptotic bias is often easier to calculate than finite-
sample bias, and estimators with zero asymptotic bias are 
at least self-correcting, in the sense that they are correct 
as N —> ∞.

• It is not obvious that an unbiased model probability 
gives an unbiased model average.  But we prove 
the bias on the model average is bounded: 
 
 
 
 
 
assuming that the individual-model estimates <f(a)> 
are consistent (a slightly stronger version of 
asymptotically unbiased.)  In short: unbiased 
model weights give unbiased model averages.
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From (g-2) HVP model averaging analysis - can compare subsets of model space to 
understand systematic effects (center), or use model weights to compute posterior 

probabilities (pie charts)

(Fermilab/HPQCD/MILC collaborations, arXiv:2301.0874; talk by S. Lahert, Tue @ 2:10 PM)


