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1. Why is model averaging useful?
2. Model averaging basics
3. Improved information criteria (arXiv:2208.14983)

4. Data subset selection - what penalty?
(arXiv:2305.19417)
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(Fermilab/HPQCD/MILC collaborations, arXiv:2301.0874)

(EN and W. Jay, arXiv:2008.01069)
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- Example 1: (g-2) HVP intermediate window (see talk by
S. Lahert, Tue @ 2:10 PM)

- 2160 fit variations - discretization, finite volume, mass
corrections...model average gives a final combined
estimate + error bar.

- Example 2: synthetic data (fit 1 state to 2-state
model truth.)

- Instead of selecting tmin by hand, compute
for each choice and average
together! (Data cuts as model choice.)
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[BMW °08]: (BMW collaboration, Science 322 (2008), arXiv:0906.3599)
Some history: we didn’t bring model

: _ ' | ' | ' ' —1[HPQCD ’08]. (HPQCD collaboration, PRD 78 (2008), arXiv:0807.1687)
averaging to lattice, we “added the B” : median :
(Bayesian MA), found new ICs, and tried to 0.25F - —O0— 0.1183(7) log Wia/u$
clarify statistical derivations/details. ’ l - —o— | 0.1187(11) log Wig /ul
0.2+ n —O— 0.1184(9) log Wee/ug
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al. ’04, BMW 08, HPQCD ’08, FNAL/MILC 0.1 ) —0— 0.1176(8) log Was/ul®
14, BMW ’14...however, many old papers 0.05L i
use ad hoc averaging prescriptions. : _ - 0-1185(6)  aa/ Wiy
| o 900 920 940 960 980 0-116 0.118 0.120
First use of AIC for lattice is BMW ’15; see M, [MeV] ays(Mz,nyp=5)
also CallLat ’18, '20, Rinaldi et al. ’19. (More »sF S
refs in our paper, including statistics papers smever HOEMVE ey | [ T NLO Taylor ¢2
back to the ‘70s.) o e 1L\ | NNLO Taylor &
NNLO+ct xPT
First use of AIC with data penalty is BMW sl  NoTbre.
'21 (although | will argue for a corrected NNLO Taylor e
version of their formula here.) | modelaverage
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Y. Chen et al '04]: arXiv:hep-lat/0405001
BMW "14]: PRD 90 (2014), arXiv:1310.3626 5
BMW '15]: Science 347 (2015), arXiv:1406.4088 | | 0000 | - _
Rinaldi et al. '19]: PRD 99 (2019), arXiv:1901.07519 1.24 1.26 1.28 1.30 1.32
[CallLat '20]: PRD 102 (2020), arXiv:2005.04795 19000 11010 11020 11030 11040 11050 11060 11070 11080 11090 A

BMW '21]: Nature 593 (2021), arXiv:2002.12347 Op, [MeV3/2]
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[CalLat '18]: (CallLat collaboration, Nature 558 (2018), arXiv:1805.12130)
[FNAL/MILC ’14]. (FNAL/MILC collaboration, PRD 90 (2014), arXiv:1407.3772)
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(sketch adapted from S. Konishi and G. Kitagawa, Information Criteria
and Statistical Modeling, Springer Series in Statistics, 2008)

Bayesian model averaging: key ideas

(EN and W. Jay, arXiv:2008.01069)

-+ Bayesian model averaging: obtain any + Asymptotically correct model weights are given by
expectation value as a weighted average the (Bayesian) Akaike information criterion (AlC):
0) = Z<O>M pr(M|D) —2logpr(M|D) = —2logpr(M) + BAIC
M

BAIC = y*(a*) + 2k

 Note that this applies at the level of expectation
values. In particular, for mean and variance we find:

(f(a)) :Ef(a;)pr(M,,,l{y}),

i+ This is not the same as taking a weighted average of !

2 2 2 : variances (first term), or taking the variance of the
ot =(f(@)*) — (f(a)) . weighted f(a"). o
=) 05w pr(Mu{y}) + ) f(a})pr(Mul{y}) — (Z f (aZ)pr(Mul{y})) ,
p T p
average stat. error model-variation systematic
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(EN and W. Jay, arXiv:2008.01069) (sketch adapted from S. Konishi and G. Kitagawa, Information Criteria
(EN and J. Sitison, arXiv:2208.14983) and Statistical Modeling, Springer Series in Statistics, 2008)

Understanding the penalty term

-+ Looking at the (Bayesian) Akaike information 5
criterion (AlC) again: (yes, this is the correct 74
Bayesian formula, no explicit prior x2!) //\ 7@1[4 . )
I
42
—2logpr(M|D) = —2log pr(M) + BAIC ' oy
BAIC = x*(a*) + 2k LML A,
%

S
7
+ "Occam’s razor” penalty term +2k, where k = #

of model parameters.

- Briefly: sample a* is an unbiased estimator for true

- Penalty emerges_naturally from theoretical parameter ar. But fluctuations of a* above and below
considerations as asymptotic bias correction. ar both overestimate likelihood (underestimate ¥2.)

Correction of +2 (per dimension of a) —> +2k.
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(EN and J. Sitison, arXiv:2208.14983)

Improved information
criteria




N (EN and J. Sitison, arXiv:2208.14983)

(S. Zhou, Bayesian model selection in terms of Kullback-Leibler discrepancy, PhD thesis, Columbia, 2011)
(S. Zhou, arXiv:2009.09248)

Using the Kullback-Leibler divergence

- KL divergence (“relative entropy”) gives a path to Bayesian information criteria®. Basic definition:

KL(M,) = E.[log pry,.(2)] — E.[log PYMM(Z)]

- Second term proportional to -log[pr(M|D)]. This is non-parametric, good - data should
determine parameters. But there are multiple ways to obtain the above from a parametric model!

+ Three options are natural and give interesting ICs:

E.[logpry, ()] ~ E.[logpry, (2]a")]] — BAIC  «.

‘0
.0
*

(“plug-in”)
E.[log pry; (2)] ~ E.[Eay[log pry, (2]2)]] —ey BPIC

(“posterior average”)

E.[log pryy, (2)] ~ E-[log Eaj,y[pry, (2]a)]] —————3% PPIC

(sample size N -> )

L 4
.0

(“posterior predictive”)
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I
hitps://github.com/jwsitison/improved_model_avg_paper

Complete formulas

Goodness of Fit Model Complexity Data Truncation
\ A2 (¥ 9,
BAIC = ¢2(a*) ok " 2do

Higher-Order GoF

¢

A * ¢ 9 1 5 X 1~ T X
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-+ Various g, H, T, 2 are all tensors of derivatives of chi-squared functions - see our paper 2208.14983, sec.
IV. Numerical code available in Python + JAX (gradients/JIT compilation), although the code is not
polished - just companion code for our paper.

+ The above formulas are approximate, NLO in large-N expansion (N = data sample size.) PPIC subset
penalty is approximately +2dc plus 1/N corrections. BPIC has larger bias from posterior avg.

- We advocate use of optimal truncation, which replaces NLO —> LO when NLO terms are too large.
(Fixes a potential numerical problem with log(...) in PPIC.)
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https://github.com/jwsitison/improved_model_avg_paper

Numerical results: fixed data

2:2] . Quadratic model truth, extract constant
5> ol { { term ao.
S
LI 5 S e - Left: fits to polynomials of degree y. Extra
L6l parameters are penalized, moreso for BPIC.
0.50F 1.0
5- ) o o aamma s mmmsmEmEsEEEESEE=EEEREEE O --------------------- T__ L
T A ] 18 H - H
0 1 2 3 4 5 -
H 1.6F
S !

- Right: MA vs. sample size log(N). BPIC does slightly

better in general, similar to fixed quadratic model. 1oL
+ (This is sort of a special case since the “true model” 1.0t
is nested within the more complex p>2 models...) 4 5 6 7 8
log(N)
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Numerical results: data selection

1.0 1.0
0.9 0.9 ' -+ BPIC cuts aggressively -
00.8—;-J[ -------------------------------- 00.8—{-—} —————————————————— S RAEEREERE often overly so (bias-
o7t o7t variance tradeoff!) But it
0.6 0.6 does fairly well when fitting
05— 05— the true model or with lots of
_ 0.50| | 1'00 0500 1'00 data.
0| P— ..f ~——— : 0 0] P— ;,-/.\./\y? ..... 0
voos e 1020 . - PPIC is more robust against
noise, otherwise performing
1.0 1.0 similarly to BAIC (no
0.9f 0.9 excessive bias)
i} oalded o lremapllletlLILIL]] R 3----------1-+F4-F1
Yo7} - 0.7r( | - BAIC is reliable and simplest
0.6 0.6} to compute; we advocate
05—+ 05— - PPIC generally, but nothing
. I b _ 0.50} e I wrong with AlIC!
s 0.50 __/\‘ © - M_ ”
Ommzimm8 | 112t 16 ) -2KO- -5:1-_“0 Omm4mm§u 112t 1\-6— 20 . 2‘4 =0
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Numerical results: data selection (2)

1.0 * 0850 r—=
1-state - 2-state
09} 0.825¢F e »

: _ , 800 F-tst-=-hwi~=—=1ug - - -¢oF - - puf- - - Jof - - -~
Scaling results vs. N, similar 0,8»—-}{----‘-1---}'I---{-}---T-{----} - ’ ! '{ o G e el
conclusions to previous slide: W& 50775 1| 1L
we prefer PPIC, robust results wod| o
and tends to give smaller error 0.6

. . ' 0.725¢
than BAIC, particularly w/noise
v 5 6 7 g Sy 5 6 7 8
BPIC has smallest error but can log(N) log(N)
t ressiv rticularl e e W.2ad .
be too aggress S, particuiarly Go=0.80 Combined average
for subset selection. § BAIC 0.825}
: BPIC 0.800—-{1}---{»-{---{- f---Sok - - -gox-- - Juf----
See paper for many more I PPIC
numerical results, including w0775
tests on real LQCD nucleon 0.750}
data (courtesy of JLab/W&M/ s sl
MIT/LANL)
0.700 21 é é % 3
. log(N)
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(EN and J. Sitison, arXiv:2305.19417)

Data subset selection:
which penalty?




(EN and J. Sitison, arXiv:2305.19417)

TWO apprOaCheS tO Subset SeleCtIOn (EN and W. Jay, arXiv:2008.01069)

. y / Y
- A common part of lattice A I
analysis is data cutting: “what d ' ;
[tmin, tmax] Should | fit my two- T - l
point correlator over?” N f I i |
! I T f Pl ?
; i
- Partition data into kept and cut g LN ST id !
[Vk, Yc] of size (dk, dc). Compute 1 - L N -
relative model weights, average! : > T l 7 T
ot ot
- “Perfect model method”: Keep (BMW collab, Nature 593 (2021), arXiv:2002.12347)
all data. yc fit to a model with Y y
X2=0; bias correction gives +2dc 4 ] A Y
penalty. T : T :
| P I : S I :
- “Subspace method”: Discard 1 ] 1 .
data in cut partition. :1; - I 5
Recompute total KL divergence, I ;E a
gives +dc penalty. : > + j ; 5 1
a:f (47
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Comparing the two methods

- We focus on AIC for simplicity (and since subspace proposal is only computed for AlC.)

- We argue that AIC (subspace) is subtly flawed. By discarding data completely and re-
computing the KL divergence, information is thrown away. This leads to inflated errors
(with no corresponding bias reduction).

- Aside from the conceptual argument, we prove the identity:

KL (M,, d) > KL**(M,, dk)

+ This behavior is (mildly) pathological - the subspace AlIC will never choose to fit all of
the data over some of the data (asymptotically.) Errors are increased as fits with data
cuts are under-penalized.
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EN and J. Sitison, arXiv:2305.19417) I

24 | B BAIC (perf)
constant fi B BAIC (subset) - Below: “grand average”
e (both models @ all tmin)
1.6} : L 1 o - Toy numerical example: vs. sample size log(N).
model truth is linear, - Both ICs agree well w/
0.50r 1.0 t model truth for all N;
5 o fr(t) =1.80 — 0.53 (1 16) generically larger errors
0" 20 for BAIC (subset)
2.4 - For constant fit, both -
(linear fit) criteria are similar; x2 is
2.0 dominant.
T o ol B e e e e e 2.0
1.6} - For linear fit (“true < {ﬂ{% e
model”), both averages [ }f Y
b | | | are right, but subset or
B under-penalizes cutting
0L so has larger error. B S T B
log(N)
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Summary

- Model averaging is a powerful and simple technique for dealing with analysis choices
and associated systematic errors. Not a replacement for full Bayesian treatment (see

talk by J. Frison, this session!), but easy to “plug in” to existing analysis chains.

+ Bayesian + KL divergence perspective suggests two new ICs:

- PPIC is more robust against noise and performs well in all tests.

-+ BPIC uses Occam’s Razor more aggressively, smaller error at the price of larger
bias.

- All (N -> o0) roads lead to the (B)AIC, which is simple and effective.

- Data subset selection can also be done (“perfect model” construction.) Use the
penalty of +2dc for AIC, or analogous penalty formulas for other ICs.
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Tips/tricks/FAQs

Q: When should the “model prior” pr(M) be used?

A: Use if you believe (before seeing data) that one model is more likely. (e.g., weight an EFT model over
an ad hoc one.).

Do not use pr(M) to penalize complex models - AIC bias term already does this!

Do use pr(M) to deal with classes of similar models. E.qg., if you are fitting 20 versions of chiral

perturbation theory and one completely distinct model, you might set pr(M) = 1/40 for the variations, so
that pr(chiPT) = pr(other model) = 1/2.

Q: How do | use model averaging with strongly-correlated data?

A: “100% correlation” is built-in: all pr(M|D) are computed with the same, fixed data D. No adjustment needed!

For data subset selection, correlations between cut and kept data can complicate life, particularly for BPIC or
PPIC; see our paper 2208.14983 for methods.
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Tips/tricks/FAQs

Q: How can | use model averaging with bootstrap/jackknife?

A: No modification needed! Bootstrap and jackknife just give better estimates of expectation values <O>w;
same MA formulas apply, with same information criteria.

(Using bootstrap to compute ICs/bias directly is an interesting direction for future work!)

Q: Help, my BMA results look weird/l don’t believe the MA errors!

A: Model averaging represents a bias-variance tradeoff; accounting for model choice uncertainty generally

gives higher variance, but lower bias (your results are more likely to be right.) The discreteness of BMA can
give strange-looking behavior, such as *increased” error when more data are added.

You should take this seriously, as long as you trust all of the inputs! (*Garbage in, garbage out...”)
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The Kullback-Lelbler divergence

-+ KL divergence: “relative entropy” between PDFs, true model M+t vs. candidate model M,.

KL(M,) = E,|log PIar (2)] — E.|log PTMM(Z)] = /dz :PI'MT(Z) log prz,. (2) — prag, (2) log PI'M“(Z):

- KL = 0 if the PDFs are equal, positive definite otherwise. Find the “closest” distribution to
prvt by maximizing the magnitude of the second term!

- Introduce model parameters a, and this leads to familiar results:

1
E.|log pr(z|a, M) logpr (vila, M) = —logpr({y}|a, M,)
N

- e.g. finding best-fit point a* = minimization of KL divergence (“max likelihood”.) Same likelihood
function gives model probability weights, via Bayes theorem: pr(M|D) ~ pr(D|M).
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I
(EN and J. Sitison, arXiv:2305.19417)
X2, dOf and subset selection

Rewrite both forms of AIC in terms of usual number of
degrees of freedom, Ndor=dk-K:

AICSY = Nuaot (X% (a*)/Naot — 1) + £,
AICE(E; = Ndof( 7 (@%) /Ngot — )

- For a bad fit with large Ndof and 1 < x2 < 2, we can have AlCsub >> 0 but
AlCrert << O (lower AIC is preferred.) Is this a problem?

- Example by explicit construction in appendix B of paper, but favoring a
“bad fit” over a “good fit” in this way requires that a large amount of data
are cut for the “good fit”. Rewrite AICre to see explicitly that the difference
s still just data cutting penalty:

AICP® = Naot (X% (@*)/Naot — 1) + k — dx.
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- When constructing any statistical estimator, one typically
worries about bias, defined as follows: for distribution prr(z)
with property &(z), given a finite sample {y} of size N and
estimator X({y}),

b.[X({y})] = E.[X(1y}) — &(2)] = E.[X({y})] — &(2)

- In other words, when averaged over the true distribution

(i.e. over many independent samples), a non-zero bias

means the estimator is wrong. We can further define
as:

b.[X(2)] = lim b.[X({y})]

- Asymptotic bias is often easier to calculate than finite-
sample bias, and estimators with zero asymptotic bias are
at least self-correcting, in the sense that they are correct
as N —> oo,

Asymptotic bias

» |t Is not obvious that an unbiased model probability

gives an unbiased model average. But we prove
the bias on the model average is bounded:

)| <Z} (M, [2))

assuming that the individual-model estimates <f(a)>
are consistent (a slightly stronger version of
asymptotically unbiased.) In short: unbiased
model weights give unbiased model averages.

Bayesian model averaging Ethan Neil (Colorado)



From (g-2) HVP model averaging analysis - can compare subsets of model space to
understand systematic effects (center), or use model weights to compute posterior
probabilities (pie charts)

W: [0.4, 1] fm
BMA - —
Trap. imp.

Trap. - ———

No osc. Simp. ——
No TB - i = i
YPT NLO TB - * ® : No TB
xPT NNLO TBq ——=®

CM TB - e

MLLGS TB - *ﬁ ® ‘ "
cubic - —— o /0.0.15

quad. w/o 0.15 - —— " cubic

BMA w/o mix - —i

YPT NLO - —
xPT NNLO - ——
CM - % = #
MLLGS: s 4

205 206 207 208

(Fermilab/HPQCD/MILC collaborations, arXiv:2301.0874; talk by S. Lahert, Tue @ 2:10 PM)
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