Studies on finite-volume effects in the inclusive semileptonic decays of charmed mesons

Ryan Kellermann

In collaboration with
Alessandro Barone, Shoji Hashimoto, Andreas Jüttner, Takashi Kaneko

Graduate University for Advanced Studies SOKENDAI

Lattice2023, July 31st, 2023
Motivation

Inclusive semileptonic decay rate $D_S \rightarrow X_S \ell \nu_\ell$

$$\sum_{X} \frac{W^-(\ell, \bar{\nu}_\ell)}{D_S} \sim \int d\omega K(\omega) \langle D_S | J^\dagger \delta(\omega - \omega_X) | D_S \rangle$$

$Lattice: 4Pt$ function

$X \sim \langle D_S | J^\dagger e^{-\beta(t_2-t_1)} | D_S \rangle$

$K(\omega_X)$ is determined by kinematics

$$\int d\omega_X K(\omega_X) []_{Lattice}$$

Problems:

1. Upper limit of the energy integral $\theta(\omega_{th} - \omega)$

2. In a finite volume we deal with a discrete set of states

Sources of systematic errors
1. Upper limit of the energy integral

Direct approximation with $e^{-\omega(t_2-t_1)}$ not possible

Apply smearing

2. Discrete set of states

This talk

Develop and verify a modelling strategy to estimate the infinite volume limit

Talk from A. Barone [A. Barone et al., arXiv:2305.14092]
Monday 07/31 5 PM
Introduction

Continuation of the project presented last year
[arXiv:2211.16830]

\[\Gamma \sim \int_0^{q_{\text{max}}} dq^2 \sqrt{q^2} \, \bar{X}(q^2) \]

\(\bar{X}(q^2) \) contains the energy integral and can be written as

\[\bar{X}(q^2) \sim \int_0^\infty d\omega \, K^{(l)}(\omega, q^2) \langle D_s(0) | \bar{J}_\mu(-q) \delta(H - \omega) \bar{J}_\nu(q) | D_s(0) \rangle \]

Kernel function contains terms of power \(\omega_X^l \), with \(l = 0,1,2 \)

Lattice data used for reconstruction of \(\bar{X}(q^2) \) using Chebyshev polynomials
The Kernel function

The shifted Chebyshev polynomials $T_j^*(e^{-\omega})$ allow an approximation of $K(\omega)$ in the range $[\omega_0, \infty]$, with $0 \leq \omega_0 < \omega_{\text{min}}$

$$K(\omega) \simeq \sum_j c_j^* T_j^*(e^{-\omega})$$

$T_0^*(x) = 1, T_1^*(x) = 2x - 1, T_2^*(x) = 8x^2 - 8x + 1, \ldots$

Kernel we wish to approximate

$$K^{(l)}(\omega) = e^{2\omega t_0} \left(\sqrt{q^2} \right)^{2-l} (m_{D^*_s} - \omega)^l \theta(m_{D^*_s} - \sqrt{q^2} - \omega),$$

$$\theta(x) = \frac{1}{1 + e^{-x/\sigma}}$$

Momentum and energy of hadronic final state
The differential rate $\bar{X} \sim \frac{d\Gamma}{dq^2}$

$$\bar{X} = \langle D_s(0)|\bar{J}_\mu^+(\vec{q})K(\vec{H}, q^2)\bar{J}_\nu(q)|D_s(0)\rangle$$

Using the smeared kernel we obtain

Decomposed \bar{X} into channels of V and A; \parallel and \perp

Questions

- Error due to approximation? [arXiv:2211.16830]
- Infinite volume limit?
Model for the infinite volume limit

The remaining two problems
- $\sigma \to 0$
- $V \to \infty$

Proper estimate requires

$$\lim_{\sigma \to 0} \lim_{V \to \infty} \bar{X}(q^2)$$

Necessary data not available

Introduce a model
- Include two-body final states
- Freely vary the upper limit of the energy integral ω_{th}

- Verify if the model reproduces the correct dependence on ω_{th}
- Estimate the $V \to \infty$ limit
The Model - Spectral reconstruction

Assume a vacuum-polarization ansatz

\[[\text{Diagramm}] \sim i \int \frac{d^4q}{(2\pi)^4} \frac{1}{(p+q)^2 - m^2 + i\epsilon} \frac{1}{q^2 - m^2 + i\epsilon} \]

\[\rho(\omega) = \frac{1}{16\pi} \sqrt{1 - \frac{4m^2}{\omega^2}} \]

\(J = 0 \) (A4A4)

\[\rho(\omega) = \frac{1}{64\pi} \omega^2 \left(\sqrt{1 - \frac{4m^2}{\omega^2}} \right)^3 \]

\(J = 1 \) (A3A3)

\[\pi \int \frac{d^3q}{(2\pi)^3} \frac{1}{\left(2\sqrt{m^2 + q^2}\right)^2} \delta(p_0 - 2\sqrt{m^2 + q^2}) \]
The Model – Infinite volume reconstruction

To verify the infinite volume behavior we can look at

\[\bar{X}^{(l)}(\omega_{th}) \sim \int_{0}^{\omega_{th}} d\omega \]

\[K_{\sigma}^{(l)}(\omega) \]

\[\rho(\omega) \]

Finite Volume \(J = 0 \)

\[\bar{X}^{(l = 0)}(\omega_{th}) \]

Finite Volume \(J = 1 \)

\[\bar{X}^{(l = 2)}(\omega_{th}) \]
Lattice Setup

- Lattice Size: $48^3 \times 96$
- Lattice Spacing: $a = 0.055$ fm
- 2+1 Möbius domain-wall fermions
- u, d quarks at $m_\pi \approx 300$ MeV
- s, c quarks at near-physical values
- 4 choices of momentum insertion corresponding to $q = (0,0,0) \rightarrow (1,1,1)$
- Numerical computation on Fugaku

![Diagram](image)

[Colquhoun et al., arXiv:2203.04938]

<table>
<thead>
<tr>
<th>ID</th>
<th>β</th>
<th>$L^3 \times N_T \times N_{\text{cfg}}$</th>
<th>$a m_u$</th>
<th>$a m_s$</th>
<th>$a m_Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M-ud5$-sa</td>
<td>0.055</td>
<td>$48^3 \times 96 \times 8$</td>
<td>0.012</td>
<td>0.025</td>
<td>0.27287</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42636</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68808</td>
</tr>
<tr>
<td>$M-ud4$-sa</td>
<td>0.055</td>
<td>$48^3 \times 96 \times 8$</td>
<td>0.008</td>
<td>0.025</td>
<td>0.27287</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42636</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68808</td>
</tr>
<tr>
<td>$M-ud3$-sa</td>
<td>0.055</td>
<td>$48^3 \times 96 \times 8$</td>
<td>0.0042</td>
<td>0.025</td>
<td>0.27287</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42636</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68808</td>
</tr>
</tbody>
</table>
This analysis focuses on the contribution of $X_{\Lambda A}^\perp(0)$ to the total $X(0)$

Only contribution to $X_{\Lambda A}^\perp(0)$ comes from the spatial Axial-Vector current insertions

$$K^{(l)}_{\sigma}(\omega) = (\sqrt{q^2})^{2-l} \bar{K}^{(l)}_{\sigma}(\omega)$$

\bar{K}: kernel up to a trivial factor of $(\sqrt{q^2})^{2-l}$

Temporal component only contribute with $l = 0$

Spatial components contribute with $l = 2$ (for $q^2 = 0$)
The idea is to use the information from our model and fit this to our lattice data and then perform the infinite volume extrapolation based on the fitted data.

Fit prescription

\[C(t) = A_0 e^{-E_0 t} + s \left[\sum_i A_i e^{-E_i t} F(E_i) \right] \]
Numerical Analysis – Procedure

The idea is to use the information from our model and fit this to our lattice data and then perform the infinite volume extrapolation based on the fitted data.

Fit prescription

\[C(t) = A_0 e^{-E_0 t} + s \left[\sum_{i} A_i e^{-E_i t} F(E_i) \right] \]
Numerical Analysis – Procedure

The idea is to use the information from our model and fit this to our lattice data and then perform the infinite volume extrapolation based on the fitted data.

Fit prescription

$$C(t) = A_0 e^{-E_0 t} + s \left[\sum_i A_i e^{-E_i t} F(E_i) \right]$$

- **Ground state**
- **Excited states**

E_i and A_i extracted from the model
Numerical Analysis – Procedure

The idea is to use the information from our model and fit this to our lattice data and then perform the infinite volume extrapolation based on the fitted data.

Fit prescription

\[C(t) = A_0 e^{-E_0 t} + s \left[\sum_i A_i e^{-E_i t} F(E_i) \right] \]

- **Ground state**
- **Overall contribution of excited states**
- **Excited states**
- \(E_i \) and \(A_i \) extracted from the model
Numerical Analysis – Procedure

The idea is to use the information from our model and fit this to our lattice data and then perform the infinite volume extrapolation based on the fitted data.

Fit prescription

\[C(t) = A_0 e^{-E_0 t} + \sum_i A_i e^{-E_i t} F(E_i) \]

- **Ground state**
 - \(C(t) = A_0 e^{-E_0 t} \)

- **Overall contribution of excited states**
 - \(\sum_i A_i e^{-E_i t} \)

- **Excited states**
 - \(E_i \) and \(A_i \) extracted from the model

- **Form factor motivated by the timelike kaon form factor**
 - \(F(E_i) = \frac{1}{E_i^2 - m_j^2} \)
 - \(J = 0: "f_0" \) state (0⁺)
 - \(J = 1: \phi \) meson (1⁻)
Numerical Analysis – Correlator fit

\[\langle D_s | A_4 A_4 | D_s \rangle \]

\[\langle D_s | A_3 A_3 | D_s \rangle \]

Model

"f_0" state

Model

\(\phi \) meson

Graphs showing correlators for different states with models fitted to the data.
Heaviside

\[\tilde{\chi}_{A_4A_4}^{(l=0)}(\omega_{th}) \]

Smearing (\(\sigma = 0.1 \)) + lattice data

\[\tilde{\chi}_{A_4A_4}^{(l=0)}(\omega_{th}) \]
Numerical Analysis – Result

\[\langle D_s | A_3 A_3 | D_s \rangle \]

Heaviside

\[\tilde{X}_{A_3A_3}^{(l=2)}(\omega_{th}) \]

\begin{align*}
L = 128 \text{ (proxy } L \to \infty) \\
L = 48
\end{align*}

Smearing ($\sigma = 0.1$) + lattice data

\[\tilde{X}_{A_3A_3}^{(l=2)}(\omega_{th}) \]

\begin{align*}
L = 128 \text{ (proxy } L \to \infty) \\
L = 48
\end{align*}
Infinite Volume limit

We can now estimate the limit $V \to \infty$, followed by $\sigma \to 0$ (at $\omega_{th} = \omega_{th}^{phys}$)

$$\bar{X}_{AA}^{\perp}(0) \sim \text{Data} + \text{Sigmoid}(L = 128) - \text{Sigmoid}(L = 48) + \text{Sigmoid}(\sigma = 0) - \text{Sigmoid} \left(\frac{1}{N} \right)$$

Infinite volume limit $\sigma \to 0$ limit

$$0.0389(22) + 0.0001(0) + 0.0028(1) = 0.0418(22)$$

For the safest choice of $q^2 = 0$:

- Negligible corrections from finite volume effects
- $\sigma \to 0$ limit gives a $\sim 7\%$ correction
Small corrections for $q^2 = 0$, BUT

Approximation becomes harder; expect larger errors

At the same time

Total contribution to $\bar{X}(q^2)$ becomes smaller

Total contribution to error budget?
Summary and Outlook

Preliminary results on the systematic error induced due to finite volume corrections for the inclusive semileptonic decay rate for $D_s \to X_s \ell \nu_\ell$

- Presented a modelling strategy based on the assumption of two-body final states
 - Good approximation of the data
- Results for the simplest case $q^2 = 0$
 - Allows a good estimate for the infinite volume limit
 - Small corrections due to finite volume effects and $\sigma \to 0$ limits
- Going forward:
 - Repeat for different current contributions and higher momentum insertions
 - Proper estimate of systematic error requires further studies on the model
 - Interactions, initial state, ...