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Overview

Goal: study QFTs through lattice models with finite dimensional local Hilbert space

Our approach: qubit regularization1,2,3 of traditional lattice models

This talk: reproduce the IR physics of 2d QCD using qubit regularization
▶ The critical theory: Wess-Zumino-Witten (WZW) model
▶ Phase diagram: gapped/gapless
▶ Confinement properties: confined/deconfined

Methods: strong coupling expansion and tensor network

Similar ideas: 4,5

1H. Singh and S. Chandrasekharan, 2019, Phys. Rev. D arXiv: 1905.13204 (hep-lat)
2T. Bhattacharya et al., 2021, Phys. Rev. Lett. arXiv: 2012.02153 (hep-lat)
3H. Liu and S. Chandrasekharan, 2022, Symmetry arXiv: 2112.02090 (hep-lat)
4L. Tagliacozzo et al., 2014, Phys. Rev. X arXiv: 1405.4811 (cond-mat.str-el)
5M. C. Bañuls et al., 2017, Phys. Rev. X arXiv: 1707.06434 (hep-lat)
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Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian

H = t
∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.) +

g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
− 1

4g2

∑
□

(W□ +W †
□)

fermion hopping: electric field: magnetic field:

absent in 1 + 1d

Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

Kogut-Susskind Qubit regularization

Hilbert space L2(G) =
⊕

λ∈ŜU(N)
Vλ ⊗ V ∗

λ

(Peter-Weyl theorem)
HQ :=

⊕
λ∈Q Vλ ⊗ V ∗

λ

(Symmetry is preserved)
Irreps ŜU(N): Young diagrams with

at most N − 1 rows
Q = {◦, , , , · · · , , }
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Reasons for Q-scheme

Q = {◦, , , , · · · , , }

Contains all N-ality: string tensions at large distance are dictated by N-ality (screening)

Smallest quadratic Casimir among each N-ality: minimize g2

2

(
La2 +Ra2

)
When g2 > 0: same IR physics as the traditional theory

Single flavor fermion representations: easy to form singlets with fermions

If we are only interested in deep IR physics of fundamental quarks in 2d:

Q̄ = {◦, , } = {1, N, N̄}
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Bosonization of 2d QCD

SU(N) Yang-Mills theory coupled to single-flavor massless Dirac fermions

L = − 1

2g2
trF 2 + ψ̄αi /Dψα + 2λ tr(JL · JR)

λ = 0 =⇒ full chiral symmetry. Generically, λ ̸= 0 on the lattice. For now, we assume λ = 0.

IR physics: SO(2N)1
/
SU(N)1 or U(N)1

/
SU(N)1 ∼= U(1)N coset WZW model.

For N = 2, SO(4) ∼= SU(2)s × SU(2)c, coset is SU(2)1 WZW model in the charge sector.

Central charge: c = c(SO(2N)1)− c(SU(N)1) = N − (N − 1) = 1.

The coset WZW model is gapped if and only if c = 0.6
6D. Delmastro et al., 2023, JHEP arXiv: 2108.02202 (hep-th)
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Strong coupling analysis

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
+ t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.) + U

∑
i

ni(N − ni)

generalized Hubbard coupling

g2 ≫ t:

1

2

(
La2
ij +Ra2

ij

)
|k⟩ = N + 1

2N
k(N − k)|k⟩,

gauge links prefer k = 0 (trivial rep)

↑↓ ↑↓ ↑↓
Baryons

(N = 2)

which is gapless for N = 2. Similar analysis for |U | ≫ t.

Gapless
(SU(2)1 WZW)

Gapped
(degenerate,

’t Hooft anomaly)

?

U

g2

Phase diagram for N = 2
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Strong coupling expansion

↑↓ ↑↓ ↑↓
Baryons

(N = 2)

When g2 ≫ t or U ≫ t, treat hopping terms as a perturbation:

XXZ spin chain: Heff =
∑
⟨i,j⟩

λ1(ZiZj − 1) + λ2(XiXj + YiYj)

where

λ1 =
N

2(N − 1)

t2

N+1
2N g2 + 2U

, λ2 = (−1)N−1 N

2(N − 1)!

tN

(N+1
2N g2 + 2U)N−1

When N = 2, |λ1| = |λ2| =⇒ SU(2) symmetry ↔ SO(4)1
/
SU(2)1 ∼= SU(2)1 WZW model.

When N > 2, |λ1| ≠ |λ2| =⇒ U(1) symmetry ↔ U(N)1
/
SU(N)1 ∼= U(1)N WZW model.
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Confinement in the strong coupling limit

Put two test quarks and pull them apart, see how the energy changes:

U ≫ t: Raise links in-between to higher irreps, confined

↑↓ ↑↓ ↑↓↑ ↓

String tension: Tk = g2
N + 1

2N
k(N − k).

−U ≫ t:

String tension: Tk = g2
N + 1

2N
k(⌊N

2
⌋ − k).

=⇒ Deconfined for N = 2, 3

Deconfined

Confined

?

U

g2

Confinement diagram for N = 2, 3
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IR central charge from entanglement entropy

DMRG: ITensora

Measuring the IR central charge through
entanglement entropy

S =
cIR
3

log
(L
π
sin

πℓ

L

)
+ const.

between two subsystems with size ℓ and
L− ℓ.

aM. Fishman et al., 2022, SciPost Phys. Codebases 0 5 10 15 20 25 30 35 40
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Entanglement Entropy at g2 = U = 0
numerical result
fitting

cIR ∼= 1.005
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Marginal operator, level crossing and critical point

SU(2)1 WZW has SU(2)L × SU(2)R symmetry
Lowest 5 states: (sL, sR) = (0, 0) and ( 12 ,

1
2 )

On the lattice: chiral symmetry is broken
λJL · JR is allowed, can be tuned by U

SU(2)L × SU(2)R
broken−−−−→ SU(2)diag

(sL, sR) = (
1

2
,
1

2
) −→ stot = 1, 0

⟨JL · JR⟩ =
1

2
⟨(JL + JR)

2 − J2
L − J2

R⟩

=
1

2

(
stot(stot + 1)− sL(sL + 1)− sR(sR + 1))

λ is marginal, β-function:

dλ

dµ
= − 1

2π
λ2

3 2 1 0 1 2 3
U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy

Level crossing at g2 = 0
k = 0, stot = 0
k = , stot = 0
k = , stot = 1
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Phase diagram

Critical point extrapolation at g2 = 0
in system size L
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1/L2.16
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U
c

Uc(L) at g2 = 0
fitting

Uc(L→ ∞) = −0.0885(4)

2 1 0 1 2
U

4

2

0

2

4

g2

GaplessGapped

U
g2 0.376

Phase Diagram

Strong coupling expansion: 3
8g

2 + U

λ1 =
t2

3
4g

2 + 2U
, λ2 = − t2

3
4g

2 + 2U
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String tensions at large U
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g2
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String tensions at U = 4
Numerical results
Linear fit

T = 0.685(8)g2 + 0.239(5)

Strong coupling result: T = 0.75g2

Surprisingly, when g2 = 0, T > 0. (In
traditional theory, when g2 = 0 the gauge
field can be absorbed)
In the qubit regularization, electric field
term is generated by the hopping term in
the RG sense:

Hij = cα†i Uαβ
ij c

β
j + cβ†j (Uαβ

ij )†cαi

− 1

β
log(trf e

−βHij )

{
∝ 1 : traditional
∝ La2

ij +Ra2
ij : qubit
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Conclusions

Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space

Difference from traditional theory: hopping generates electric field term (non-universal)
▶ Shifted critical point: Uc ̸= 0 at g2 = 0
▶ Non-zero string tension at g2 = 0

Preliminary results showing that the UV physics can also be reproduced

Suggests qubit regularization as a promising method even in higher dimension and for
more complex gauge theories
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Thanks for attention!
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