IR Phases of 2d QCD from Qubit Regularization

Hanqing Liu

In collaboration with

Tanmoy Bhattacharya (LANL) and Shailesh Chandrasekharan (Duke)

JULY 31, 2023

- 2 Traditional Hamiltonian LGT and its qubit regularization
- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)

6 Conclusions

- 2 Traditional Hamiltonian LGT and its qubit regularization
- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)
- 6 Conclusions

- Goal: study OFTs through lattice models with finite dimensional local Hilbert space
- Our approach: *qubit regularization*^{1,2,3} of traditional lattice models
- This talk: reproduce the IR physics of 2d QCD using gubit regularization
 - The critical theory: Wess-Zumino-Witten (WZW) model
 - Phase diagram: gapped/gapless
 - Confinement properties: confined/deconfined
- Methods: strong coupling expansion and tensor network
- Similar ideas: 4,5

¹H. Singh and S. Chandrasekharan, 2019, *Phys. Rev. D* arXiv: **1905**, **13204** (hep-lat) ²T. Bhattacharva et al., 2021, Phys. Rev. Lett. arXiv: 2012.02153 (hep-lat)

³H. Liu and S. Chandrasekharan, 2022, Symmetry arXiv: 2112.02090 (hep-lat)

⁴L. Tagliacozzo et al., 2014, Phys. Rev. X arXiv: 1405.4811 (cond-mat.str-el)

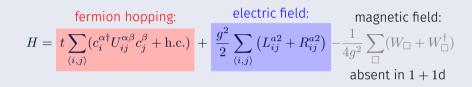
⁵M. C. Bañuls et al., 2017, Phys. Rev. X arXiv: **1707.06434** (hep-lat)

2 Traditional Hamiltonian LGT and its qubit regularization

- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)
- 6 Conclusions

Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian



Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

	Kogut-Susskind	Qubit regularization
Hilbert space	$ L^{2}(G) = \bigoplus_{\lambda \in \widehat{\mathrm{SU}(N)}} V_{\lambda} \otimes V_{\lambda}^{*} $ (Peter-Weyl theorem)	$\mathcal{H}_Q := igoplus_{\lambda \in Q} V_\lambda \otimes V^*_\lambda$ (Symmetry is preserved)
Irreps	$\widehat{\mathrm{SU}(N)}$: Young diagrams with at most $N-1$ rows	$Q = \{\circ, \Box, \Box, \Box, \Box, \cdots, \overline{\Box}, \overline{\Box}\}$

Reasons for Q-scheme

Contains all N-ality: string tensions at large distance are dictated by N-ality (screening)

- Smallest quadratic Casimir among each N-ality: minimize $\frac{g^2}{2}(L^{a2}+R^{a2})$
- When $g^2 > 0$: same IR physics as the traditional theory
- Single flavor fermion representations: easy to form singlets with fermions

If we are only interested in deep IR physics of fundamental quarks in 2d:

$$\bar{Q} = \{\circ, \Box, \overline{\Box}\} = \{\mathbf{1}, \mathbf{N}, \overline{\mathbf{N}}\}$$

- 2 Traditional Hamiltonian LGT and its qubit regularization
- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)
- 6 Conclusions

Bosonization of 2d QCD

SU(N) Yang-Mills theory coupled to single-flavor massless Dirac fermions

$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr} F^2 + \bar{\psi}^{\alpha} \mathrm{i} \not D \psi^{\alpha} + 2\lambda \operatorname{tr} (J_L \cdot J_R)$$

 $\lambda = 0 \implies$ full chiral symmetry. Generically, $\lambda \neq 0$ on the lattice. For now, we assume $\lambda = 0$.

IR physics: $SO(2N)_1/SU(N)_1$ or $U(N)_1/SU(N)_1 \cong U(1)_N$ coset WZW model.

For N = 2, $SO(4) \cong SU(2)_s \times SU(2)_c$, coset is $SU(2)_1$ WZW model in the charge sector.

Central charge: $c = c(SO(2N)_1) - c(SU(N)_1) = N - (N - 1) = 1.$

The coset WZW model is gapped if and only if c = 0.6

⁶D. Delmastro et al., 2023, JHEP arXiv: **2108.02202** (hep-th)

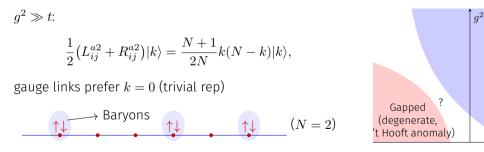
- 2 Traditional Hamiltonian LGT and its qubit regularization
- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)
- 6 Conclusions

Strong coupling analysis

0

generalized Hubbard coupling

$$H = \frac{g^2}{2} \sum_{\langle i,j \rangle} \left(L_{ij}^{a2} + R_{ij}^{a2} \right) + t \sum_{\langle i,j \rangle} \left(c_i^{\alpha \dagger} U_{ij}^{\alpha \beta} c_j^{\beta} + \text{h.c.} \right) + \frac{U \sum_i n_i (N - n_i)}{U \sum_i n_i (N - n_i)}$$



which is gapless for N = 2. Similar analysis for $|U| \gg t$.

Phase diagram for ${\cal N}=2$

Gapless (SU(2)₁ WZW)

U

Strong coupling expansion

When $g^2 \gg t$ or $U \gg t$, treat hopping terms as a perturbation:

$$XXZ$$
 spin chain: $H_{ ext{eff}} = \sum_{\langle i,j
angle} \lambda_1 (Z_i Z_j - 1) + \lambda_2 (X_i X_j + Y_i Y_j)$

where

$$\lambda_1 = \frac{N}{2(N-1)} \frac{t^2}{\frac{N+1}{2N}g^2 + 2U}, \quad \lambda_2 = (-1)^{N-1} \frac{N}{2(N-1)!} \frac{t^N}{(\frac{N+1}{2N}g^2 + 2U)^{N-1}}$$

• When N = 2, $|\lambda_1| = |\lambda_2| \implies SU(2)$ symmetry $\leftrightarrow SO(4)_1 / SU(2)_1 \cong SU(2)_1$ WZW model. • When N > 2, $|\lambda_1| \neq |\lambda_2| \implies U(1)$ symmetry $\leftrightarrow U(N)_1 / SU(N)_1 \cong U(1)_N$ WZW model.

Confinement in the strong coupling limit

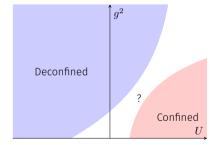
Put two test quarks and pull them apart, see how the energy changes:

 $U \gg t$: Raise links in-between to higher irreps, confined

String tension:
$$T_k = g^2 \frac{N+1}{2N} k(N-k).$$

 $-U \gg t:$
String tension: $T_k = g^2 \frac{N+1}{2N} k(\lfloor \frac{N}{2} \rfloor - k).$
 \implies Deconfined for $N = 2, 3$

-1



Confinement diagram for N = 2, 3

- 2 Traditional Hamiltonian LGT and its qubit regularization
- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)
- 6 Conclusions

IR central charge from entanglement entropy

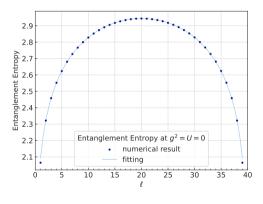
DMRG: ITensor^a

Measuring the IR central charge through entanglement entropy

$$S = \frac{c_{\rm IR}}{3} \log \left(\frac{L}{\pi} \sin \frac{\pi \ell}{L}\right) + {\rm const.}$$

between two subsystems with size ℓ and $L-\ell$.

^aM. Fishman et al., 2022, SciPost Phys. Codebases



 $c_{\rm IR} \cong 1.005$

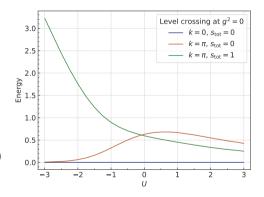
Marginal operator, level crossing and critical point

- SU(2)₁ WZW has SU(2)_L × SU(2)_R symmetry Lowest 5 states: $(s_L, s_R) = (0, 0)$ and $(\frac{1}{2}, \frac{1}{2})$
- On the lattice: chiral symmetry is broken $\lambda J_L \cdot J_R$ is allowed, can be tuned by U

$$\begin{aligned} \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R &\xrightarrow{\mathrm{broken}} \mathrm{SU}(2)_{\mathrm{diag}} \\ (s_L, s_R) &= (\frac{1}{2}, \frac{1}{2}) \longrightarrow s_{\mathrm{tot}} = 1, 0 \\ \langle J_L \cdot J_R \rangle &= \frac{1}{2} \langle (J_L + J_R)^2 - J_L^2 - J_R^2 \rangle \\ &= \frac{1}{2} \big(s_{\mathrm{tot}}(s_{\mathrm{tot}} + 1) - s_L(s_L + 1) - s_R(s_R + 1)) \end{aligned}$$

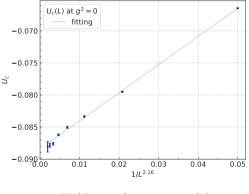
 λ is marginal, β -function:

$$\frac{\mathrm{d}\lambda}{\mathrm{d}\mu}=-\frac{1}{2\pi}\lambda^2$$

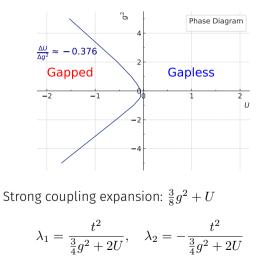


Phase diagram

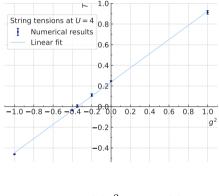
Critical point extrapolation at $g^2 = 0$ in system size L



$$U_c(L \to \infty) = -0.0885(4)$$



String tensions at large U



 $T = 0.685(8)g^2 + 0.239(5)$

• Strong coupling result: $T = 0.75g^2$

- Surprisingly, when $g^2 = 0$, T > 0. (In traditional theory, when $g^2 = 0$ the gauge field can be absorbed)
- In the qubit regularization, electric field term is generated by the hopping term in the RG sense:

$$H_{ij} = c_i^{\alpha \dagger} U_{ij}^{\alpha \beta} c_j^{\beta} + c_j^{\beta \dagger} (U_{ij}^{\alpha \beta})^{\dagger} c_i^{\alpha}$$

$$-\frac{1}{\beta}\log(\operatorname{tr}_{f} \mathrm{e}^{-\beta H_{ij}}) \begin{cases} \propto \mathbb{1} &: \text{traditional} \\ \propto L_{ij}^{a2} + R_{ij}^{a2} : \text{qubit} \end{cases}$$

- 2 Traditional Hamiltonian LGT and its qubit regularization
- 3 2d QCD and its bosonization
- 4 Strong coupling analysis
- 5 Numerical results for SU(2)
- 6 Conclusions

- Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space
- Difference from traditional theory: hopping generates electric field term (non-universal)
 - Shifted critical point: $U_c \neq 0$ at $g^2 = 0$
 - Non-zero string tension at $g^2 = 0$
- Preliminary results showing that the UV physics can also be reproduced
- Suggests qubit regularization as a promising method even in higher dimension and for more complex gauge theories

THANKS FOR ATTENTION!