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Overview



Overview

m Goal: study QFTs through lattice models with finite dimensional local Hilbert space
m Our approach: qubit regularization®?:3 of traditional lattice models

m This talk: reproduce the IR physics of 2d QCD using qubit regularization
» The critical theory: Wess-Zumino-Witten (WZW) model

» Phase diagram: gapped/gapless
» Confinement properties: confined/deconfined
m Methods: strong coupling expansion and tensor network

m Similar ideas: 45
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Traditional Hamiltonian LGT and its qubit regularization



Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian

fermion hopping: electric field: magnetic field:
=t> (U3’ +he) Z (LE? + R3?) -~ (Wo + W)
(4,3) (1] O

absentin 1+ 1d

Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

Kogut-Susskind Qubit regularization
Hilbert space L2(G) = @/\GSU(N) W Vy Hg:= @A.EQ Vi ® VY

(Peter-Weyl theorem) (Symmetry is preserved)
Irreps SU(N): Young diagrams with @ = {o, L], H, i

at most N — 1 rows




Reasons for Q-scheme

Q= {o, [, H @ g Ch

m Contains all N-ality: string tensions at large distance are dictated by N-ality (screening)
m Smallest quadratic Casimir among each N-ality: minimize %(L“2 + R*2)
m When g2 > 0: same IR physics as the traditional theory

m Single flavor fermion representations: easy to form singlets with fermions

If we are only interested in deep IR physics of fundamental quarks in 2d:

Q={o, 0, 0}={1, N, N}
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2d QCD and its bosonization



Bosonization of 2d QCD

SU(N) Yang-Mills theory coupled to single-flavor massless Dirac fermions

1 _
L= —3 F? + *iPyp® + 2Xtr(J - JR)

A =0 = full chiral symmetry. Generically, A # 0 on the lattice. For now, we assume \ = 0.

|
IR physics: SO(2N)1/ SU(N); or U(N);/SU(N); = U(1)n coset WZW model.

For N =2, S0(4) = SU(2), x SU(2),, coset is SU(2); WZW model in the charge sector.
Central charge: ¢ = ¢(SO(2N);) — ¢(SU(N);) =N —-(N—-1) = 1.

|
The coset WZW model is gapped if and only if ¢ = 0.8

6D. Delmastro et al,, 2023, JHEP arXiv: 2108.02202 (hep-th)
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Strong coupling analysis

generalized Hubbard coupling

g a a ’
H:?Z L2+R2 Z(C?TUgﬁc?+hC + Uznz —n;)
(1,9) (i,9)

>t 9

N+1

1 a a
§<Lij2 + R2]2>|k> = IN

k(N —E)|k),
Gapless

gauge links prefer k = 0 (trivial rep) (S0 7

Ti/) Baryons 4l 1 (N = 2) (dfgepnpeergte,
"t Hooft anomaly) U

which is gapless for N = 2. Similar analysis for |U| > t.

Phase diagram for N = 2




Strong coupling expansion

__— Baryons

14 14 1 (N=2)

When g2 >t or U > t, treat hopping terms as a perturbation:

XXZspinchain: Heg = Y M(ZiZ; — 1) + Aa(X; X, + YiY5)
(i.4)

where
N t2 N1 N tN
AL = _ 1) N+L 2 , Ae=(=1) ) (NEL 2 N-1
2(N —1) Mdlg2 o 2(N =D (xrg® +20)
m When N =2, [\1]| = |X\2] = SU(2) symmetry <> SO(4 /SU =~ SU(2); WZW model.
m When N > 2, [\i] # [A2] = U(1) symmetry <> U(N);/SU(N); = U(1)y WZW model.



Confinement in the strong coupling limit

Put two test quarks and pull them apart, see how the energy changes:

U > t: Raise links in-between to higher irreps, confined

g
T
: . N+1
String tension: T = 927—’_ (N — k). Deconfined
2N
?
U Confined
. . N+1, N u
St t T =Tk — k).
ring tension: Ty = g°—— (L2J )

Confinement diagram for N = 2,3
— Deconfined for N =2,3




Numerical results for SU(2)



IR central charge from entanglement entropy

m DMRG: ITensor? 29p et T
. 2.8+
m Measuring the IR central charge through 2,5
entanglement entropy 22'6
CIR L . wl §2-5
S=—1lo (— sin —) + const. 9
3 B\ 224
L 523
between two subsystems with size ¢ and 2ol Entanglement Entropy at g> = U =0
L _ £ « numerical result
) 2.1r, fitting .
9M. Fishman et al,, 2022, SciPost Phys. Codebases 0 5 10 15 20 25 30 35 40

!

CIR = 1.005




Marginal operator, level crossing and critical point

m SU(2); WZW has SU(2)r x SU(2)r symmetry

Lowest 5 states: (sz,sgr) = (0,0) and (1, 3)
m On the lattice: chiral symmetry is broken Level crossing atg? =0
Mg, - Jg is allowed, can be tuned by U 3.0¢ — k=0,5:=0
—— k=1, St =0
25¢ —— k=T, Sot =
SU@)L x SU)r 2% SU2)ding L -
11 8
(SLvsR):(iaﬁ) —>St0t:170 I_%)1.5*
1 i
(T Jr) = 5o + Jr)* = JE = Jf)
1 051
i(stot(stot +1) =se(sp+1) —sr(sr+1))
=3 2 1 0 1 2 3

A is marginal, 8-function:
dX 1 5
T




Phase diagram

Critical point extrapolation at g2 =0

in system size L T T
UdL) atg?=0
fitting GapIeSS
—0.070
1 2
—0.075 u
S
-0.080 *
—0.085r
oo o ‘ ‘ ‘ ‘ Strong coupling expansion: 2g% + U
’ (SJ.OO 0.01 0.02 0.03 0.04 0.05
1yL218 2 /2

= A=
U.(L — o0) = —0.0885(4) 324200 P 324U




String tensions at large U

~

String tensions at U=4 g1

i

Numerical results
Linear fit

0.41

0.2

¥

1.01

0.6

m Strong coupling result: T = 0.75¢2

m Surprisingly, when g2 =0, T > 0. (In
traditional theory, when ¢ = 0 the gauge
field can be absorbed)

m In the qubit regularization, electric field
term is generated by the hopping term in
the RG sense:

T1.0-08-06-84-020

—0.2}

—0.4}

T = 0.685(8)g? + 0.239(5)

0 02 04 06 08 10

g Hv] = CaTUaﬁ B + Cﬁ-‘.(U,L7 )TCZQ
1 g\ Jox 1 : traditional
— = log(try e P 2 2 .
B oc L{? + R{? - qubit




B Conclusions



Conclusions

m Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space

m Difference from traditional theory: hopping generates electric field term (non-universal)
» Shifted critical point: U, #0at g?> =0
> Non-zero string tension at g = 0

m Preliminary results showing that the UV physics can also be reproduced

m Suggests qubit regularization as a promising method even in higher dimension and for
more complex gauge theories
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