The Thirring Model in 2+1d with Optimised Domain Wall Fermions

Simon Hands & Jude Worthy

Lattice 2023 Fermilab 31/7/23

JHEP **1509** (2015) 047 PLB **754** (2016) 264 JHEP **1611** (2016) 015 PRD **99** (2019) 034504 PRD **102** (2020) 094502 Symmetry **13** (2021) 8 PoS LATTICE2021 (2022) 317 PRD 107 (2023) 014504 INNOVATION SKILLS NEWS, EVEN

eloping common approaches to apply to English hospital activity data to facilitate a deeper

The Thirring Model in 2+1d

$$\mathscr{L} = \bar{\psi}_i (\partial \!\!\!/ + m) \psi_i + \frac{g^2}{2N} (\bar{\psi}_i \gamma_\mu \psi_i)^2$$

Covariant quantum field theory of *N* flavors of interacting fermion in 2+1 dimensions. Fermions are spinor fields $\psi, \bar{\psi}$ acted on by 4x4 Dirac matrices γ_{μ}

> Interaction between conserved currents: like charges *repel*, opposite charges *attract*

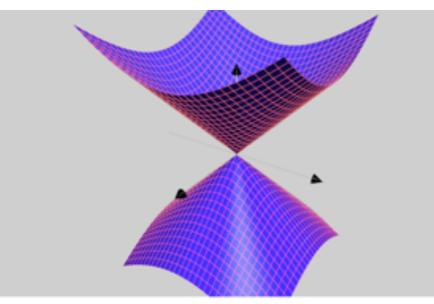
$$\partial = \partial_{\mu} \gamma_{\mu} \quad \mu = 0, 1, 2 \qquad i = 1, \dots, N$$

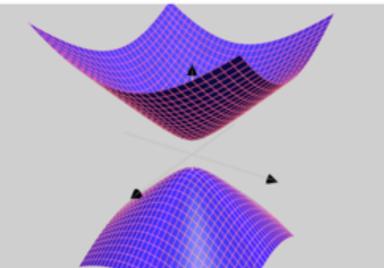
$$\operatorname{tr}(\gamma_{\mu} \gamma_{\mu}) = 4 \qquad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu} \qquad \gamma_{5} \equiv \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$$

 $\mu, \nu = 0, 1, 2, 3$

For sufficiently large self-interaction g_{29}^2 and sufficiently small N, the Fock vacuum is conceivably disrupted by a particle-hole **bilinear condensate**

$$\left\langle \bar{\psi}\psi\right\rangle \equiv \frac{\partial\ln Z}{\partial m}\neq 0$$





resulting in a dynamically-generated mass gap at the Dirac point semi-metal →insulator

Cf. chiral symmetry breaking in QCD

Hypothesis: the transition at $g_c^2(N)$ defines a **Quantum Critical Point** whose universal properties perhaps characterise low-energy excitations in graphene... D.T. Son, Phys. Rev. B**75** (2007) 235423

Corresponds to a new strongly-interacting QFT... ...a priori no small dimensionless parameters

Continuum Symmetries in d = 2 + 1

$$\mathcal{S} = \int d^3x \; \bar{\Psi}(\gamma_\mu \partial_\mu) \Psi \; + \; m \bar{\Psi} \Psi$$

For *m*=0 *S* is invariant under global U(2N) symmetry generated by (i) $\Psi \mapsto e^{i\alpha}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{-i\alpha}$, (ii) $\Psi \mapsto e^{i\alpha\gamma_5}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_5}$ (iii) $\Psi \mapsto e^{\alpha\gamma_3\gamma_5}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{-\alpha\gamma_3\gamma_5}$, (iv) $\Psi \mapsto e^{i\alpha\gamma_3}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_3}$ For *m* \neq 0, γ_3 (iv) and γ_5 (ii) rotations are no longer symmetries \Rightarrow U(2N) \rightarrow U(N) \otimes U(N)

Cf. models based on staggered/Kähler-Dirac formulations:

 $\Rightarrow U(N) \otimes U(N) \rightarrow U(N)$

 $\mathscr{L} = \bar{\Psi}(x, s) D_{DWF} \Psi(y, s')$

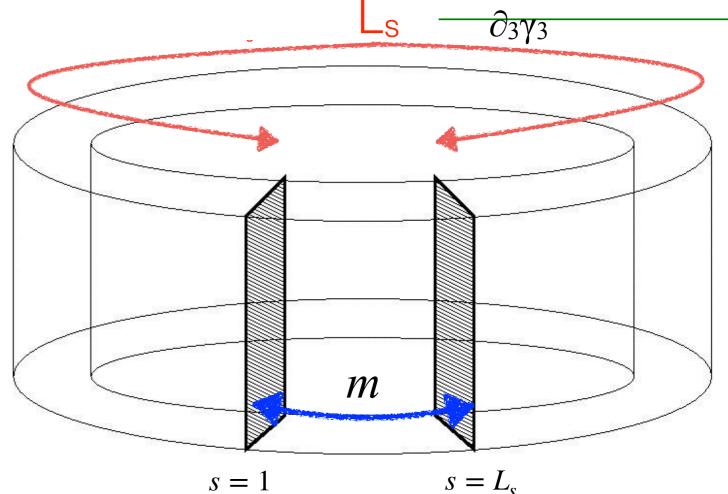
Fermions propagate freely along a fictitious third direction of extent L_s with open boundaries

Basic idea as $L_s \rightarrow \infty$:

- zero-modes of D_{DWF} localised on walls are ± eigenmodes of γ₃
- Modes propagating in bulk can be decoupled (with cunning)

"Physical" fields $\psi(x) = P_-\Psi(x,1) + P_+\Psi(x,L_s);$ in 2+1d target space $\bar{\psi}(x) = \bar{\Psi}(x,L_s)P_- + \bar{\Psi}(x,1)P_+,$

Domain Wall Fermions



with projectors $P_{\pm} = \frac{1}{2}(1 \pm \gamma_3)$

The closest we can get to U(2) symmetry is articulated by the **Ginsparg-Wilson** relations:

$$\{\gamma_3, D\} = 2D\gamma_3 D \quad \{\gamma_5, D\} = 2D\gamma_5 D \quad [\gamma_3\gamma_5, D] = 0$$

satisfied by the 2+1d overlap operator

$$D_{ov} = \frac{1}{2} \left[(1 + m_h) + (1 - m_h) \frac{\mathscr{A}}{\sqrt{\mathscr{A}^{\dagger} \mathscr{A}}} \right]$$

with, eg.

Shamir kernel
$$\mathscr{A} = [2 + D_W - M]^{-1} [D_W - M] D_W \text{local}; Ma = O(1)$$

locality of D_{ov} not manifest but confirmed numerically

SJH, Mesiti, Worthy PRD 102 (2020) 094502

ie.
$$\frac{\det D_{\text{DWF}}(m_i)}{\det D_{\text{DWF}}(m_h = 1)} = \det D_{L_s}(m_i)$$

DWF provide a regularisation of overlap with a *local* kernel in 2+1+1d

with
$$\lim_{L_s \to \infty} D_{L_s} = D_{ov}$$

SJH PLB 754 (2016) 264

Formulational issues

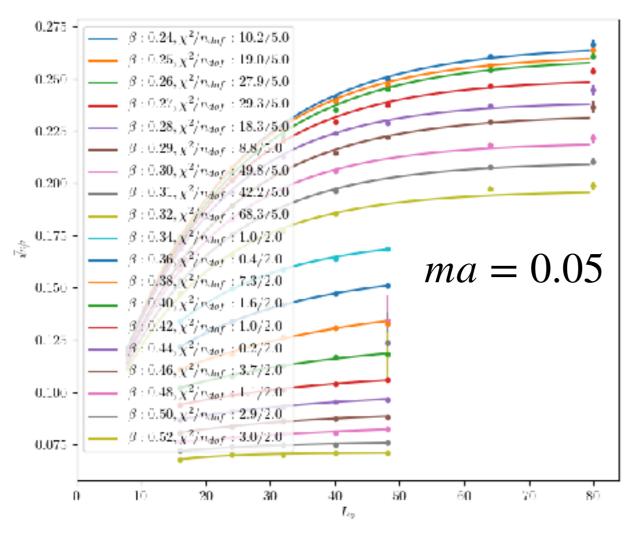
By analogy with QCD, formulate auxiliary field $A_{\mu}(x)$ throughout bulk and 3-static ie. $\partial_3 A_{\mu}=0$: $\Leftrightarrow A_{\mu}$ couples to conserved DWF fermion current

 $\mathcal{S} = \bar{\Psi} \mathcal{D} \Psi = \bar{\Psi} D_W \Psi + \bar{\Psi} D_3 \Psi + m_i S_i \quad \text{with} \quad D_W = \gamma_\mu D_\mu - (\hat{D}^2 + M);$ $D_3 = \gamma_3 \partial_3 - \hat{\partial}_3^2,$

$\label{eq:nb} \mathbf{NB} \, D_\mu \propto (1 + i A_\mu), \, \mathrm{not} \, e^{i A_\mu},$ ie. links are *non-compact* and *non-unitary*

 $[\partial_3, D_\mu] = [\partial_3, \hat{D}^2] = 0 \text{ but } [\partial_3, \hat{\partial}_3^2] \neq 0 \text{ on walls}$ obstruction to proving det $\mathscr{D} > 0$

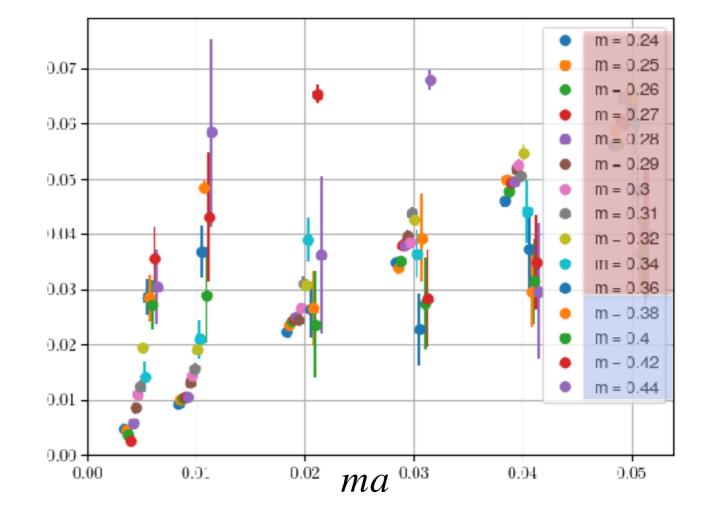
RHMC with measure $\sqrt{\det(\mathcal{D}^{\dagger}\mathcal{D})}$ for N = 1

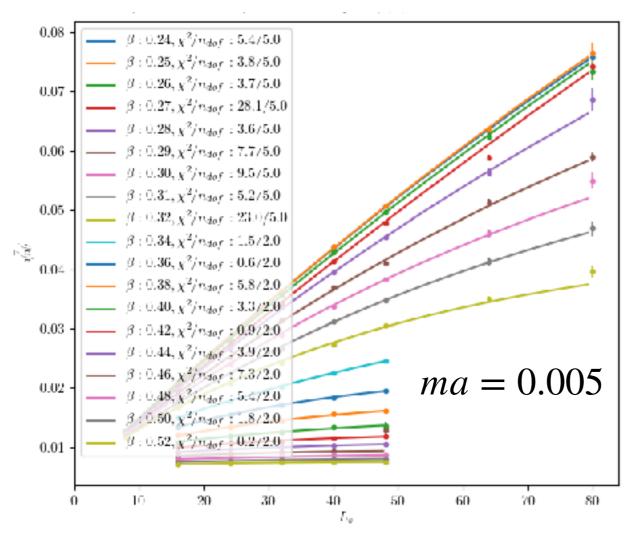


Decay constant $\Delta(\beta, m)$:

$$\langle \bar{\psi}\psi \rangle_{\infty} - \langle \bar{\psi}\psi \rangle_{L_s} = A(\beta, m)e^{-\Delta(\beta, m)L_s}$$

Have
$$L_s = 8, 16, ..., 80$$



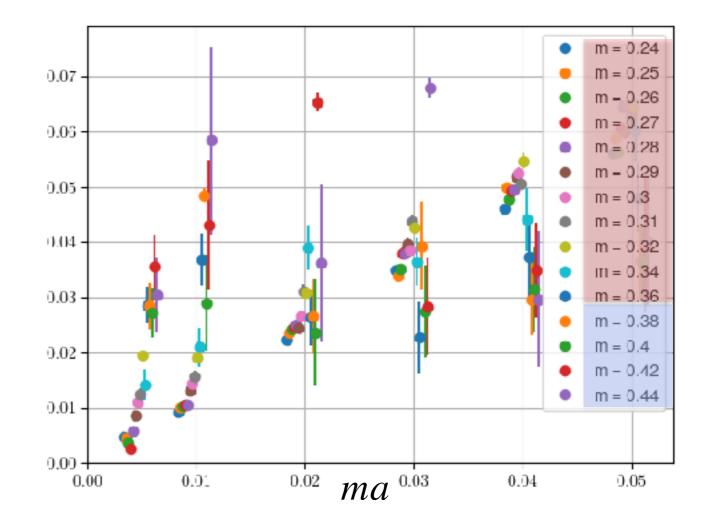


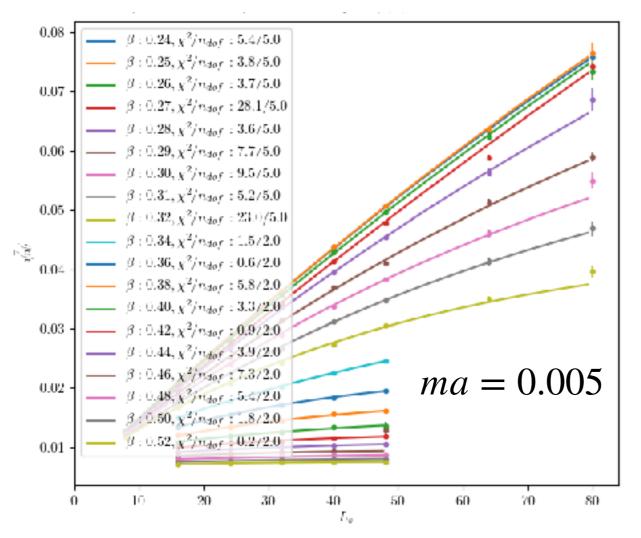
Decay constant $\Delta(\beta, m)$:

$$\langle \bar{\psi}\psi \rangle_{\infty} - \langle \bar{\psi}\psi \rangle_{L_s} = A(\beta, m)e^{-\Delta(\beta, m)L_s}$$

Have
$$L_s = 8, 16, \dots, 80$$

 $L_s \rightarrow \infty$ not yet under control at lightest masses, strongest couplings





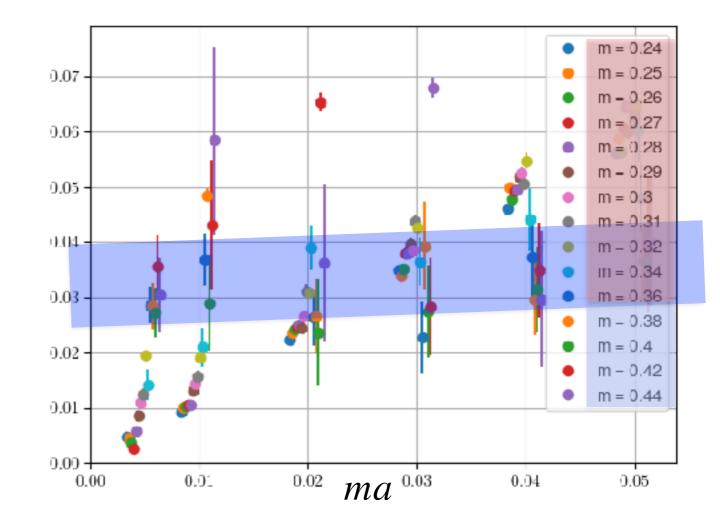
Decay constant $\Delta(\beta, m)$:

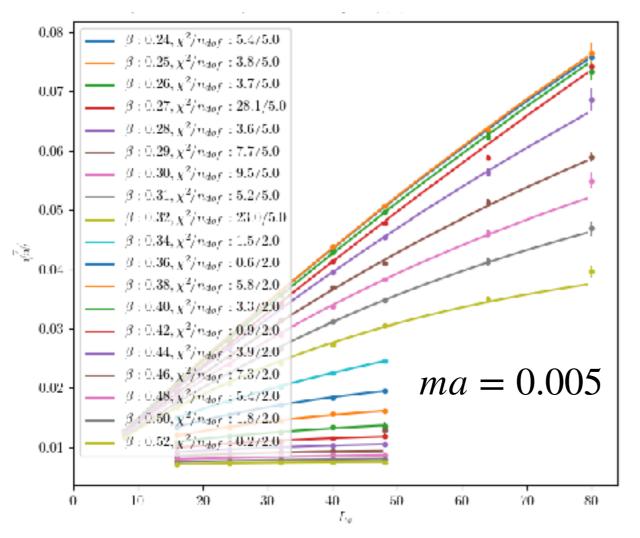
 $\sim \propto m^0$ at weak coupling

$$\langle \bar{\psi}\psi \rangle_{\infty} - \langle \bar{\psi}\psi \rangle_{L_s} = A(\beta,m)e^{-\Delta(\beta,m)L_s}$$

Have
$$L_s = 8, 16, \dots, 80$$

 $L_s \rightarrow \infty$ not yet under control at lightest masses, strongest couplings





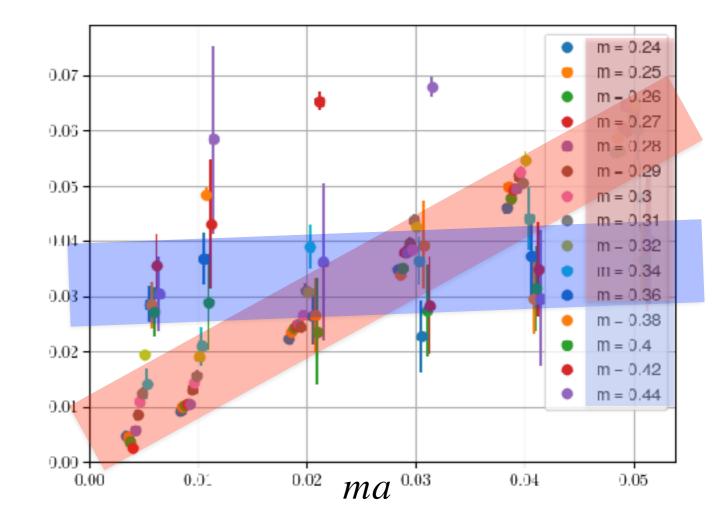
Decay constant $\Delta(\beta, m)$:

- $\sim \propto m^0$ at weak coupling
- $\sim \propto m$ at strong coupling

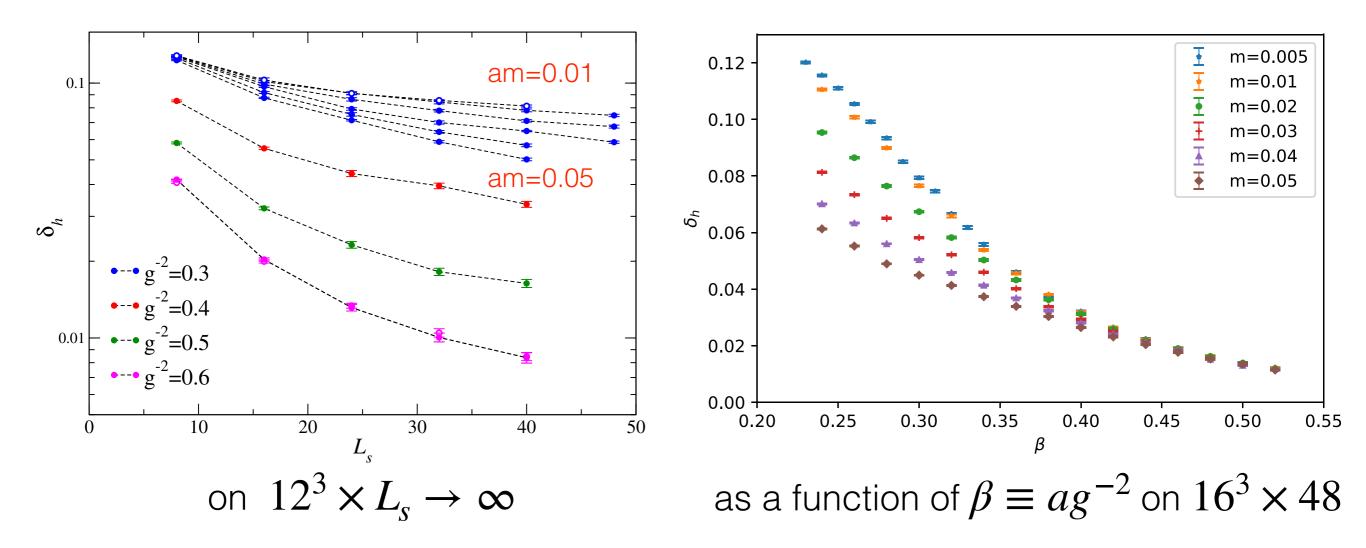
$$\langle \bar{\psi}\psi \rangle_{\infty} - \langle \bar{\psi}\psi \rangle_{L_s} = A(\beta, m)e^{-\Delta(\beta, m)L_s}$$

Have
$$L_s = 8, 16, ..., 80$$

 $L_s \rightarrow \infty$ not yet under control at lightest masses, strongest couplings



U(2) symmetry restoration requires residual $\delta_h ightarrow 0$



Qualitatively different at strong and weak coupling, and *slow*...

$$\delta_h = \operatorname{Im}\langle \bar{\Psi}(1)\gamma_3 \Psi(L_s) \rangle \approx \frac{1}{2} \left(\langle \bar{\psi}\psi \rangle - i \langle \bar{\psi}\gamma_3\psi \rangle \right)$$

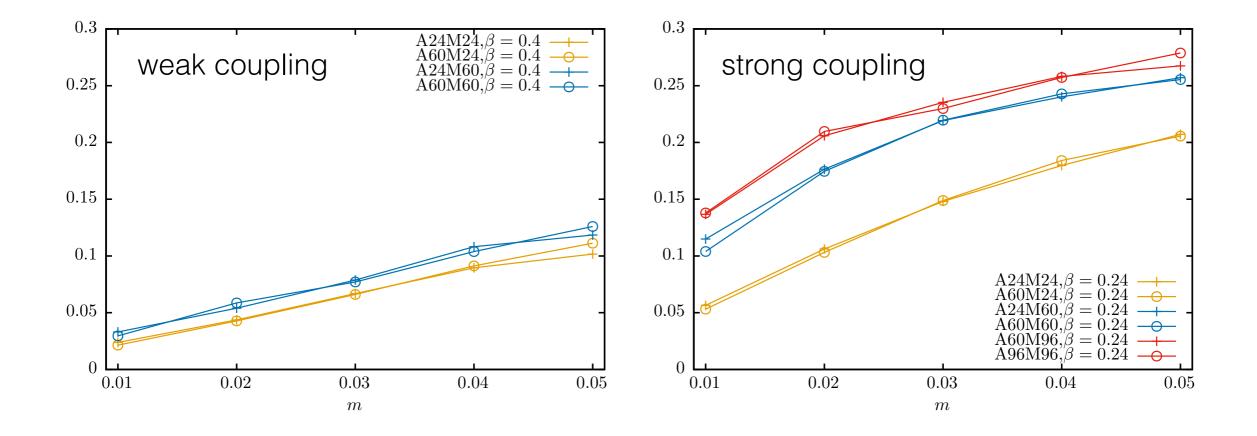
Need to improve control over $L_s \to \infty$

- Partial Quenching (PQ): $L_s(sea) < L_s(valence)$
- Use a better kernel in D_{ov} : Shamir \rightarrow Wilson
- better rational approximation to sgn:

hyperbolic tangent (HT) \rightarrow Zolotarev (Z)

Partial Quenching

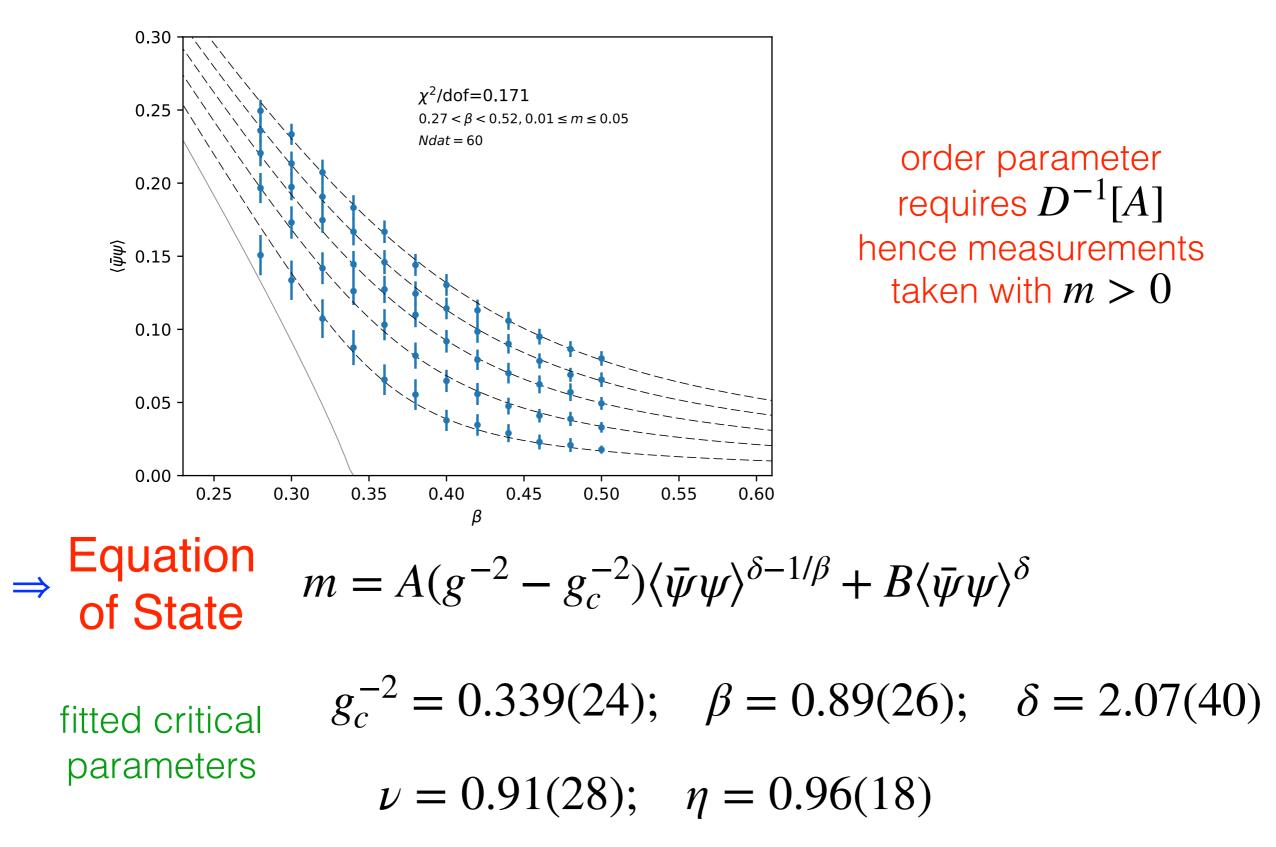
Shamir kernel, 12³, $L_s(\text{sea}) = 24,60,96 \ L_s(\text{valence}) = 24, 60, 96$



Bilinear condensate signal determined by L_s (valence)

12^3 PQ, Shamir, HT $L_s(sea) = 96$, $L_s(valence) = 300$

 $L_s = 300, \beta_c = 0.339(24), \beta_m = 0.89(26), \delta = 2.069(399)$



Better kernel $D_{ov}(\mathscr{A})$

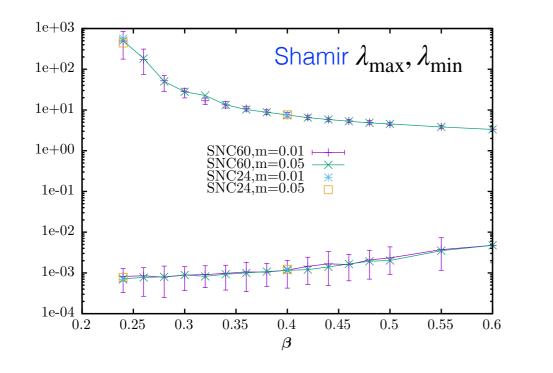
Replace Shamir kernel $\mathscr{A} = (2 + D_W)^{-1}D_W$

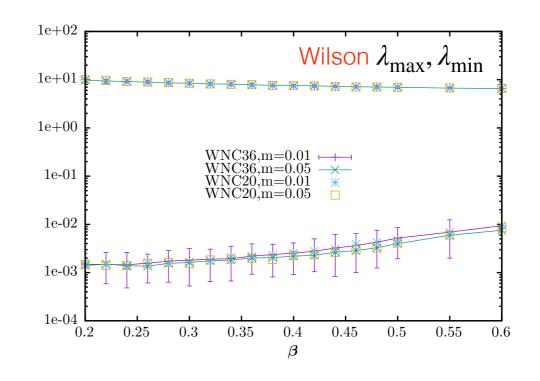
$$D_{SHT} = \begin{pmatrix} D_W + I & -P_- & 0 & imP_+ \\ -P_+ & D_W + I & -P_- & 0 \\ 0 & -P_+ & D_W + I & -P_- \\ -imP_- & 0 & -P_+ & D_W + I \end{pmatrix}$$

with *Wilson kernel* $\mathscr{A} = D_W$

$$D_W[A_\mu] = \gamma_\mu D_\mu - \hat{D}^2 - M$$

$$D_{WHT} = \begin{pmatrix} D_W + I & (D_W - I)P_- & 0 & -im(D_W - I)P_+ \\ (D_W - I)P_+ & D_W + I & (D_W - I)P_- & 0 \\ 0 & (D_W - I)P_+ & D_W + I & (D_W - I)P_- \\ +im(D_W - I)P_- & 0 & (D_W - I)P_+ & D_W + I \end{pmatrix}$$





Better rational approximation of $sgn(\mathscr{A})$

Replace $\operatorname{sgn}(x) \approx \tanh(L_s \tanh^{-1} x) = \frac{1 - \mathcal{T}_{HT}}{1 + \mathcal{T}_{HT}}$

$$\mathcal{T}_{HT} = \left(\frac{1-x}{1+x}\right)^{L_s}$$

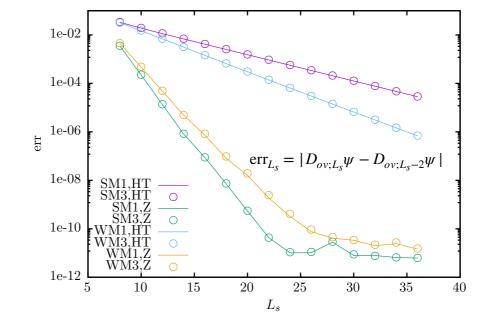
Euclidean Cayley transform

with
$$\operatorname{sgn}(x) \approx \frac{1 - \mathcal{T}_Z}{1 + \mathcal{T}_Z} \equiv dx \frac{\prod_{m=1}^{L_s/2 - 1} (a_m - x^2)}{\prod_{m=1}^{L_s/2} (d_m - x^2)}$$
 Zolotarev approximation

coefficients a_m, d_m, d depend on range of applicability of approximation and are given in terms of Jacobi elliptic functions

With
$$\mathcal{T}_Z = \prod_{s=1}^{L_s} \frac{1 - \omega_s x}{1 + \omega_s x}$$

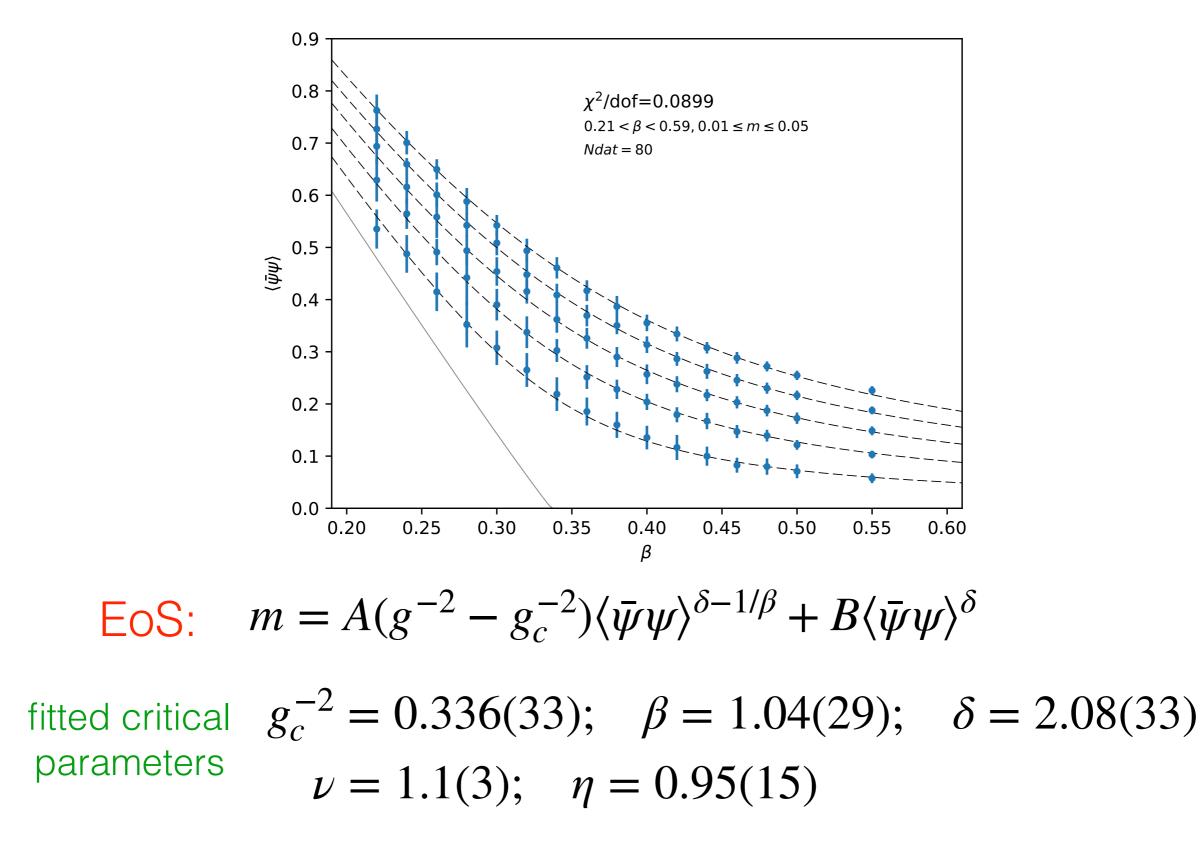
Optimal DWF T-W Chiu PRL90 (2003) 071601



$$\Rightarrow D_{WZ} = \begin{pmatrix} \omega_1 D_W + I & (\omega_1 D_W - I) P_- & 0 & -im(\omega_1 D_W - I) P_+ \\ (\omega_2 D_W - I) P_+ & \omega_2 D_W + I & (\omega_2 D_W - I) P_- & 0 \\ 0 & (\omega_3 D_W - I) P_+ & \omega_3 D_W + I & (\omega_3 D_W - I) P_- \\ +im(\omega_4 D_W - I) P_- & 0 & (\omega_4 D_W - I) P_+ & \omega_4 D_W + I \end{pmatrix}$$

12^3 Wilson, L_s(sea)=30HT, L_s(valence)=30Z

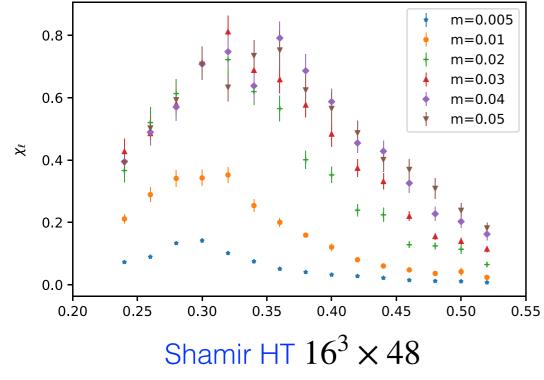
 $L_s = 30, \beta_c = 0.336(33), \beta_m = 1.04(29), \delta = 2.078(325)$



Funnies....

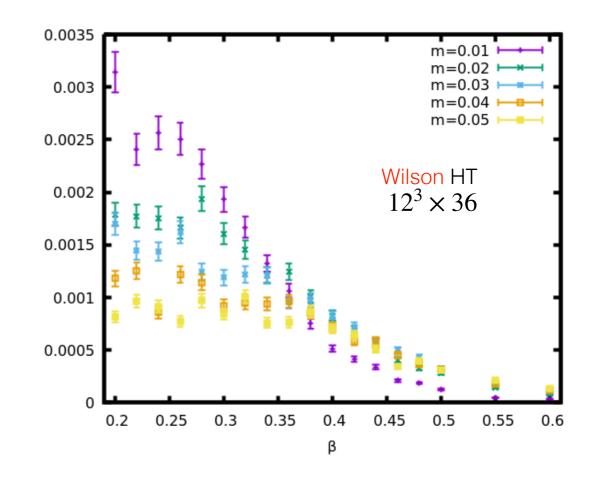
• Susceptibility
$$\chi_{\ell} = \langle (\bar{\psi}\psi)^2 \rangle - \langle \bar{\psi}\psi \rangle^2$$

previously showed inverted mass hierarchy



0.003 m=0.01 m=0.02 🛏 m=0.03 -----0.0025 m=0.04 🛏 m=0.05 ----0.002 $\begin{array}{c} \text{PQ Shamir HT} \\ 16^3 \times 300 \end{array}$ 0.0015 0.001 0.0005 0 0.2 0.25 0.35 0.4 0.5 0.6 0.3 0.45 0.55 β

It looks as if order parameter fluctuations are particularly L_s -sensitive



Summary

	_				
	12 ³ <mark>Shamir</mark> L _s =300 (HTv)	12 ³ Wilson L _s =30 (HTs&Zv)	16 ³ <mark>Shamir</mark> HT L _s =8,,80	16 ³ staggered HMC	staggered FSS (Bag)
g c ⁻²	0.339(24)	0.336(33)	0.283(1)	-	_
β	0.89(26)	1.04(29)	0.320(5)	0.57(2)	0.70(1)
δ	2.07(40)	2.08(33)	4.17(5)	2.75(9)	2.63(2)
V	0.91(28)	1.1(3)	0.55(1)	0.71(3)	0.85(1)
η	0.96(18)	0.95(15)	0.16(1)	0.60(4)	0.65(1)

- Two different DWF regularisations (Shamir, Wilson) of N=1 give compatible results
- \bullet Results clearly **distinct** from previous based on uncontrolled $L_{s} \rightarrow \infty$
- Is $U(2) \rightarrow U(1) \otimes U(1)$ (Dirac, DWF) distinct from $U(1) \otimes U(1) \rightarrow U(1)$ (Kähler-Dirac, staggered)?
- Promising, by need larger volumes, higher statistics...

Summary

	12 ³ <mark>Shamir</mark> L _s =300 (HTv)	12 ³ Wilson L _s =30 (HTs&Zv)	16 ³ <mark>Shamir</mark> HT L _s =8,,80	16 ³ staggered HMC	staggered FSS (Bag)
g c ⁻²	0.339(24)	0.336(33)	0.283(1)	-	_
β	0.89(26)	1.04(29)	0.320(5)	0.57(2)	0.70(1)
δ	2.07(40)	2.08(33)	4.17(5)	2.75(9)	2.63(2)
V	0.91(28)	1.1(3)	0.55(1)	0.71(3)	0.85(1)
η	0.96(18)	0.95(15)	0.16(1)	0.60(4)	0.65(1)

 Two different DWF regularisations (Shamir, Wilson) of N=1 give compatible results

- Results clearly **distinct** from previous based on uncontrolled $L_s \rightarrow \infty$
- Is $U(2) \rightarrow U(1) \otimes U(1)$ (Dirac, DWF) distinct from $U(1) \otimes U(1) \rightarrow U(1)$ (Kähler-Dirac, staggered)?
- Promising, by need larger volumes, higher statistics...