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DiRAC Health Data Science and AI Placement Opportunity 

DiRAC will award one Innovation Placement in 2021 in the area of Health Data Science and the application of 
AI. The nominal length is 6 months and has to be completed by 30 September 2021. In this scheme a final year 
PhD student or an early career researcher can have a funded placement (up to £25k) with the Getting It Right 
First Time (GIRFT) programme.  GIRFT is funded by the UK Department of Health and Social Care and is a 
collaboration between NHS England & NHS Improvement and the Royal National Orthopaedic Hospital NHS 
Trust.  GIRFT uses comprehensive benchmarking data analysis to identify unwarranted variation in healthcare 
provision and outcomes in National Health Service (NHS) hospitals in England and combine this with deep dive 
visits to the hospital by clinicians with follow up on agreed actions by an improvement team. The programme 
covers the majority of healthcare specialities. 

You have to be working on research that falls within the STFC remit in order to qualify for the placement; 
however, you can be funded by other organisations besides STFC, as long as the subject area is identifiable as 
being in Particle Physics, Astronomy & Cosmology, Solar Physics and Planetary Science, Astro-particle Physics, 
and Nuclear Physics.  

To check your eligibility please contact Jeremy Yates (j.a.yates@ucl.ac.uk) and Maria Marcha 
(m.marcha@ucl.ac.uk). 

You must get your Supervisor or PIs permission before applying for this placement.   It is allowed under UKRI’s 
rules, but only with your supervisor/PIs consent. 

We will do our best to be flexible; part time working can be arranged as long as the placement does not exceed 
9 months. 

This should be looked on as an opportunity to learn new skills and contribute outside of your research area. 

The deadline for applications is 10am on Monday 11th January 2021. 

We are pleased to offer the following DIRAC Innovation Placement with GIRFT 

Developing common approaches to apply to English hospital activity data to facilitate a deeper 
understanding of issues related to the COVID-19 pandemic in the UK.   

This provides a unique opportunity to work with one of the most detailed healthcare datasets in the world, 
to develop common approaches which provide insight into the COVID-19 pandemic.  The areas of work will 
also be relevant to other healthcare areas beyond the current pandemic, providing long term benefit to both 
GIRFT and the wider health community. 
 
Candidates will be expected to apply the tools and techniques they have learnt or used during their studies 
from areas with an advanced approach to data science, into an applied healthcare project.  This approach 
can lead to both disruptive innovation within the NHS and promotes the upskilling of both clinicians and 
healthcare researchers. After their placement, candidates should be able to apply this experience to future 
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Call for applications for DiRAC Community Development Director 

1 Background 
The DiRAC Facility Management Team invites applications for the new position of Community 
Development Director. The post is available from 1st April 2021, and will initially run until 31st March 
2023. There is the possibility of extension beyond this date (subject to funding). The post-holder 
should be available to take up the role no later than 1st October 2021. 

Established in 2009, DiRAC is now the primary provider of computing resources for the Science & 
Technology Facilities Council (STFC) community working in the areas of theoretical astrophysics, 
particle physics, cosmology and nuclear physics (www.dirac.ac.uk). DiRAC is a distributed facility with 
hardware deployments at the University of Cambridge, Durham University, the University of Edinburgh 
and the University of Leicester. The DiRAC Project Office is based at University College London. The 
current DiRAC Director is Mark Wilkinson, Professor of Astrophysics at the University of Leicester.  

This is an exciting opportunity to join the DiRAC team and further develop engagement between the 
facility and the user community. DiRAC’s success relies on the support of its researcher community 
and the direct engagement of researchers in the design and oversight of HPC services is a unique 
feature of the DiRAC facility. The creation of this post to maintain and develop community engagement 
activities is an explicit recognition of the importance of these activities to DiRAC’s mission of delivering 
world-class science, training and innovation. 

2 Detailed job description 
2.1 Role purpose:  
To determine how DiRAC can best serve its user community and expand its user base in terms of the 
number and variety of projects supported. 

2.2 Roles and Responsibilities:  
User engagement 

• Act as liaison between the DiRAC Management Team and the user community, proactively 
engaging with PPAN researchers to discuss their HPC requirements; 

• Carry out an annual satisfaction survey among the user community;  

• Introducing DiRAC researchers to new technologies and their cutting-edge research 
applications in order to contribute to the assessment of their suitability for DiRAC workflows; 

• Facilitate the mentoring of new users by existing users. 

• Encourage users to participate in public engagement activities and to develop press releases 
which highlight the value of DiRAC to their research. 

• Promote participation in innovation placement schemes and other activities in collaboration 
with industry. 
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The Thirring Model in 2+1d

r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

m35Ψ̄γ3γ5Ψ

tr(γµγµ) = 4

13

SHLS =

∫

d3x ψ̄(∂µ + iAµ)ψ +
1

2g2
(Aµ − ∂µϕ)2

ψ "→ eiαψ; Aµ "→ Aµ + ∂µϕ; ϕ "→ ϕ + α

〈ψ̄ψ〉
m

=
∑

x

〈ψ̄γ3ψ(0)ψ̄γ3ψ(x)〉

γ3Aγ3 = γ5Aγ5 = A†

µ = 0, 1, 2

15

∂/ ≡ ∂μγμ

{γμ, γν} = 2δμν

i = 1,…, N

ψ, ψ̄

γ5 ≡ γ0γ1γ2γ3

γμ

Interaction between conserved currents:   
like charges repel, opposite charges attract

ℒ = ψ̄i(∂/ + m)ψi +
g2

2N
(ψ̄iγμψi)2

Covariant quantum field theory of  
N flavors of interacting fermion in 2+1 dimensions. 

Fermions are spinor fields         acted on by 4x4 Dirac matrices 

μ, ν = 0,1,2,3
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For sufficiently large self-interaction g2,  and sufficiently small N, the Fock 
vacuum is conceivably disrupted by a particle-hole bilinear condensate

Hypothesis: 
the transition at  defines a 
Quantum Critical Point
whose universal properties perhaps 
characterise low-energy 
excitations in graphene…

g2
c (N)

D.T. Son, Phys. Rev. B75 (2007) 235423

Corresponds to a new strongly-interacting QFT… 
…a priori no small dimensionless parameters

⟨ψ̄ψ⟩ ≡
∂ ln Z
∂m

≠ 0
resulting in a 
dynamically-generated 
mass gap at the Dirac point

Cf. chiral symmetry breaking in QCD

semi-metal →insulator
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ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ
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Continuum Symmetries in d = 2 + 1
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This paper explores the application of formulations originally developed to optimise

the reproduction of global symmetries in lattice QCD, namely Ginsparg-Wilson (GW)

fermions [30] and, principally, domain wall fermions [31, 32], to reducible fermion models in

2+1d. After reviewing the relevant symmetries and identifying three distinct but physically

equivalent formulations of the mass term in the next section, in section 3 we generalise the

GW relation to fermions in 2+1d and identify remnant quasi-global symmetries, which

recover the desired U(2Nf ) form only in the continuum limit a → 0. A realisation of the

GW symmetries by an overlap operator [33] is given. In section 4 we define a domain

wall fermion operator in 2+1+1d which permits the definition of fermi fields localised on

domain walls at either end of the newly introduced 3 direction which purport to satisfy

the U(2Nf ) symmetry in the limit that the wall separation Ls → ∞. An important

component of the argument is the reformulation of the three distinct mass terms given in

section 2. Section 5 presents results from numerical investigations of the Nf = 1 domain

wall operator in the context of quenched non-compact QED3, which permits the use of

either weak, strong, or intermediate coupling. While there is no attempt to explore either

continuum or thermodynamic limits, we calculate both bilinear condensates (section 5.1)

and meson propagators (section 5.2) using each of the three alternative mass terms, and

show that in almost all cases as Ls → ∞ the results are in accord with a scenario in

which U(2) symmetry is broken to U(1)⊗U(1). Interestingly, the most rapid convergence

to the U(2)-symmetric limit is obtained for the case of a “twisted” mass term imψ̄γ3ψ. For

intermediate coupling the results for the condensate 〈ψ̄ψ〉 are compatible in the massless

limit with old results obtained with staggered fermions [35]. Finally in section 6 we present

a summary of the findings and an outlook for future investigations. We also discuss the

intriguing possibility that for reducible theories of fermions in 2+1d the overlap and domain

wall approaches may not coincide except in the continuum limit.

2 Relativistic fermions in 2+1d

I begin by reviewing the continuum formulation of a gauge theory with fermion fields

Ψ, Ψ̄ in a reducible representation of the spinor algebra, based on 4 × 4 Euclidean Dirac

matrices γµ with {γµ, γν} = 2δµν , µ, ν = 0, 1, 2, and having a parity-invariant mass. The

weakly-interacting long-wavelength limit of staggered lattice fermions naturally reproduces

this formulation with Nf = 2 flavors [20] — in what follows flavor indices are suppressed.

The action can be written (for convenience, the necessary
∫

d3x is omitted in all action

definitions)

S = Ψ̄DΨ+mΨ̄Ψ (2.1)

where the covariant derivative operator D can be expanded as

D = γ0D0 + γ1D1 + γ2D2 = −D†. (2.2)

This has global symmetries

Ψ (→ eiαΨ ; Ψ̄ (→ Ψ̄e−iα, (2.3)

Ψ (→ eαγ3γ5Ψ ; Ψ̄ (→ Ψ̄e−αγ3γ5 , (2.4)

– 3 –

For m=0  S is invariant under global U(2N) symmetry generated by 

For m≠0,      γ3 (iv)  and γ5 (ii) rotations are no longer symmetries

⇒   U(2N) → U(N)⊗U(N) J
H
E
P
0
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where γ3 and γ5 are two additional traceless, hermitian, and linearly independent 4×4 ma-

trices which anticommute with all the γµ (see (2.8), (2.9) below), and as usual in Euclidean

matric γ5 ≡ γ0γ1γ2γ3. For fermion mass m = 0 there are two additional symmetries

Ψ #→ eiαγ5Ψ ; Ψ̄ #→ Ψ̄eiαγ5 , (2.5)

Ψ #→ eiαγ3Ψ ; Ψ̄ #→ Ψ̄eiαγ3 . (2.6)

These four rotations generate a global U(2) invariance, which generalises to U(2Nf ) for sev-

eral flavors. The mass term explicitly breaks the symmetry from U(2Nf ) → U(Nf )⊗U(Nf ).

It will prove interesting to explore different forms of the mass term, which are simply

accessed by changing integration variables in the path integral. Since there is no axial

anomaly in 2 + 1d, this procedure is straightforward in the continuum and the resulting

action describes identical physics. If, however, the representations of the Dirac matrices are

tied to the particular form of the underlying lattice, as is the case for staggered fermions

or graphene, then due to discretisation effects the mass terms are not equivalent and

correspond to distinct patterns of symmetry breaking (see the discussion following eq. (2.17)

for an example). Let’s recast the continuum action (2.1) in terms of two two-component

spinors u and d:

S = ūD̃u− d̄D̃d+mūu+md̄d , (2.7)

where D̃ = −D̃† = σ1D0+σ2D1+σ3D2 and the σi are Pauli matrices. The link with (2.1)

requires the identification

γ0 =

(

σ1
−σ1

)

; γ1 =

(

σ2
−σ2

)

; γ2 =

(

σ3
−σ3

)

, (2.8)

implying

γ3 =

(

−i

i

)

; γ5 =

(

1

1

)

; iγ3γ5 =

(

1

−1

)

. (2.9)

We now define an important discrete symmetry, parity, here specified for convenience in

terms of reversal of all three spacetime axes xµ #→ −xµ (in general parity must invert

an odd number of axes, since flipping an even number is equivalent to a rotation: the

Euclidean parity operation which flips just one axis is formally equivalent to the time-

reversal operation frequently discussed in condensed matter physics). In fact it can be

realised in two ways:

ū #→ d̄; d̄ #→ −ū; u #→ d; d #→ −u; i.e. Ψ #→ iγ3Ψ; Ψ̄ #→ −iΨ̄γ3 (2.10)

ū #→ −id̄; d̄ #→ −iū; u #→ id; d #→ iu; i.e. Ψ #→ iγ5Ψ; Ψ̄ #→ −iΨ̄γ5 . (2.11)

This should be no surprise, since both γ3 and γ5 behave identically with respect to the γµ
appearing in (2.1). In either case the parity operation effectively exchanges the u and d

fields, absorbing the sign change of D̃ under x → −x, but keeping the mass term invariant.

Now consider a change of basis

ψ =
1√
2
(u+ d); χ =

1√
2
(−u+ d); ψ̄ =

1√
2
(ū− d̄); χ̄ =

1√
2
(ū+ d̄) (2.12)

– 4 –

(i) (ii)
(iii) (iv)

Cf. models based on staggered/Kähler-Dirac formulations:

⇒   U(N)⊗U(N) → U(N)



Basic idea as Ls→∞: 
• zero-modes of DDWF localised on walls are ± eigenmodes of γ3
• Modes propagating in bulk can be decoupled (with cunning)

“Physical” fields
in 2+1d target space 

Fermions propagate freely along a 
fictitious third direction 

of extent Ls with open boundaries

Domain Wall Fermions
Fermions propagate freely along a 
fictitious third direction of extent Ls

the only coupling between the walls
is proportional to explicit massgap

State-of-the-Art for QCD:
“Domain Wall Fermions”

U(2Nf)➞U(Nf)⨂U(Nf)
recovered on the walls

as Ls→∞
SJH: JHEP 1509 (2015) 047; 

Phys.Lett. B754 (2016) 264-269
First graphene results out soon….
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coordinates of a lattice site and s = 1, . . . , Ls its coordinate along the extra dimension,

here labelled 3. The kinetic term in the action is then

SDW =
∑

x,y

∑

s,r

Ψ̄(x, s)DDW(x, s|y, r)Ψ(y, r) , (4.1)

with domain wall Dirac operator

DDW(x, s|y, r) = δs,rD(x|y) + δx,yD
DW
3 (s|r). (4.2)

The first term is the orthodox 2 + 1d Wilson operator

D(x|y) =
1

2

∑

µ=0,1,2

[

(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U
†
µ(y)δx−µ̂,y

]

+ (M − 3)δx,y (4.3)

with gauge link variables Uµ(x), and DDW
3 controls hopping in the 3 direction:

DDW
3 (s|s′) =

1

2

[

(1− γ3)δs+1,s′(1− δs′,Ls
) + (1 + γ3)δs−1,s′(1− δs′,1)− 2δs,s′

]

. (4.4)

Note there are Dirichlet boundary conditions imposed in direction 3, at s = 1 and s = Ls.

The inclusion of DDW
3 explicitly destroys the equivalence of γ3 and γ5 in the dynamics

described by the action (4.1), so it will be important to test whether and how this is

recovered in practice.

The key idea [31] is that the dynamics generated by (4.3) and (4.4), with suitably

chosen M , results in fermion zeromodes localised on domain walls at s = 1, Ls, which are

also respectively ∓ eigenmodes of γ3. The 2+1d physics we wish to describe is formulated

entirely using these localised modes (the Wilson terms in (4.3), (4.4) render the would-be

zeromodes due to unwanted doubler species non-normalisable in the limit Ls → ∞ [31]).

In particular we need to define 2+1d fermion mass terms corresponding to their continuum

counterparts in (2.1), (2.14) and (2.17). To this end, define fermion fields ψ(x), ψ̄(x) living

in 2+1d:

ψ(x) = P−Ψ(x, 1) + P+Ψ(x, Ls);

ψ̄(x) = Ψ̄(x, Ls)P− + Ψ̄(x, 1)P+, (4.5)

where from now on P± ≡ 1
2(1±γ3). We thus consider actions of the form (4.1) supplemented

by three alternative mass terms:

mhSh = mhψ̄ψ = mh[Ψ̄(x, Ls)P−Ψ(x, 1) + Ψ̄(x, 1)P+Ψ(x, Ls)]; (4.6)

m3S3 = im3ψ̄γ3ψ = im3[Ψ̄(x, Ls)γ3P−Ψ(x, 1) + Ψ̄(x, 1)γ3P+Ψ(x, Ls)]; (4.7)

m5S5 = im5ψ̄γ5ψ = im5[Ψ̄(x, Ls)γ5P+Ψ(x, Ls) + Ψ̄(x, 1)γ5P−Ψ(x, 1)]. (4.8)

It is interesting to note that Sh has the same form as the fermion mass term for domain

wall formulations of 3 + 1d physics, and couples fields from opposite walls; S3 also couples

opposite walls, but S5 couples fields living on the same wall.

In the next section we will examine the numerical consequences of the three terms (4.6)–

(4.8) and in particular check whether they yield compatible, U(2)-symmetric results in the

Ls → ∞ limit.

– 9 –

with projectors  

∂3γ3Ls

P± = 1
2 (1 ± γ3)

ℒ = Ψ̄(x, s)DDWFΨ(y, s′ )

m

s = 1 s = Ls



satisfied by the 2+1d overlap operator

266 S. Hands / Physics Letters B 754 (2016) 264–269

and

D =





1 0 · · · 0

0 1 0
...

... 1
. . .

0 C+ − (T −1)Ls C−




. (15)

Again, note L "= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]

= DLs,Ls (1)
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]
, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator

D Ls[H] = 1
2



(1 + mh) − (1 − mh)γ3

1 −
(

1−H
1+H

)Ls

1 +
(

1−H
1+H

)Ls



 (18)

≡ 1
2

[
(1 + mh) − (1 − mh)γ3 tanh(Ls tanh−1 H)

]
. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞

D Ls = Dov

= 1
2

[
(1 + mh) − (1 − mh)γ3sgn

(
−γ3

DW − M
2 + (DW − M)

)]

= 1
2

[
(1 + mh) + (1 − mh)

A√
A† A

]
, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so

sgn(H) = H√
H2

≈ −γ3
(i/p − M)

(2 − M)

(2 − M)

M
= −γ3

[
i/p
M

− 1
]

(21)

so that the overlap operator

Dov ≈ i/p
(1 − mh)

2M
+ mh. (22)

Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
i, j, k ∈ {+1, −1},

sgn(H) ≈ −γ3
i/̃p + (2n − M)

(2n − M)
= −γ3

[
i/̃p

(2n − M)
+ 1

]

(23)

with n = |i| + | j| + |k|, so the overlap is

Dov ≈ 1 + (1 − mh)

2(2n − M)
i/̃p. (24)

So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
pling there is the possibility of the system entering a parity-
breaking Aoki phase signalled by a bilinear condensate with the 
quantum numbers of an isotriplet pion. This was investigated in 
the context of a 3d Gross–Neveu model in [15], where it was found 
that the Aoki phase was manifest for mh < 0 with the width of the 
parity-broken region vanishing exponentially as Ls → ∞.

3. Equivalence of γ3 and γ5

Despite the manifest independence of the overlap operator Dov
(20) of which matrix γ3 or γ5 is used to define the hermitian 
argument H of the signum function, for finite Ls it remains un-
clear whether the distinction is important or not [7], since clearly 
the definition (4) of the domain wall operator D3 distinguishes 
them. We can address this using the analytic approximation for 
signum (19).

First, the series expansion for tanh−1 H is well-defined since 
H = γ3 A is a bounded operator, i.e. |H | = M/(2 − M) < 1 for 0 <
M < 11:

tanh−1 H = H + H3

3
+ H5

5
+ · · · (25)

Each term is an odd power, so can be reexpressed using
γ3 Aγ3 = A†:

H2n+1 = γ3 A(A† A)n. (26)

The signum approximation is then

tanh(Lsγ3 A
∑

n

bn(A† A)n) = sinh(Lsγ3 A
∑

n bn(A† A)n)

cosh(Lsγ3 A
∑

n bn(A† A)n)
(27)

with bn = (2n + 1)−1. In the McLaurin series expansions of the hy-
perbolic functions on the RHS of (27), expansion of the argument 
yields a general term of the form

Lm
s




∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nm




m∏

i=1

[bni (γ3 A)(A† A)ni ] (28)

For the sinh series, m is an odd integer so that the term in square 
brackets reads

(
∏

bni )(γ3 A)(A†)n1(γ3 A)(A† A)n2 . . . (γ3 A)(A† A)nm

= (
∏

bni )(γ3 A)(A†)n1(A† A)n2+1(A† A)n3 . . .

(A† A)nm−1+1(A† A)nm

= (
∏

bni )(γ3 A)(A† A)
∑

i ni+(m−1)/2. (29)

1 For free fermions the most stringent limit on M comes from the origin of mo-
mentum space. In practice on any finite lattice with antiperiodic temporal boundary 
conditions M = 1 is safe since |H| = 1/

√
5 − 4 cos π

Lt
< 1 for Lt < ∞.

DWF provide a 
regularisation of overlap with 

a local kernel in 2+1+1d
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locality of  not manifestDov

with, eg.

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

16
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but confirmed numerically
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Shamir kernel 𝒜 = [2 + DW − M]−1[DW − M] DW local; Ma = O(1)

Dov =
1
2 [(1 + mh) + (1 − mh)

𝒜

𝒜†𝒜 ]

The closest we can get to U(2) symmetry is articulated by the  
Ginsparg-Wilson relations:

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0
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{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0
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detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

[∂3, Dµ] = [∂3, D̂
2] = 0

[∂3, ∂̂
2
3 ] != 0

detD > 0

〈ψ̄ψ〉Ls = 〈ψ̄ψ〉∞ − A(m, g2)e−∆(m,g2)Ls

16



 Formulational issues

By analogy with QCD, formulate auxiliary field Aµ(x) 
throughout bulk and 3-static ie. ∂3Aµ=0:  
⇔ Aμ couples to conserved DWF fermion current                      

Can we simulate N = 1 with DWF and HMC?

Let’s start by defining the fermion action for a single reducible fermion
flavor (ie. N = 1) in terms of 2+1+1d fields:

S = Ψ̄DΨ = Ψ̄DWΨ + Ψ̄D3Ψ + miSi (1)

where the mass term Si will be specified later and the components of the
kinetic operator are:

DW = γµDµ − (D̂2 + M); (2)

D3 = γ3∂3 − ∂̂2
3 , (3)

with

Dµxy =
1

2
[Uµxδx+µ̂ − U †

µyδx−µ̂,y] ≡ −D†
µxy (4)

−(D̂2 + M)xy = −
1

2
[
∑

µ

(Uµxδx+µ̂ + U †
µyδx−µ̂,y) − (6 − 2M)δxy] (5)

≡ −(D̂2 + M)†xy

∂3xy =
1

2
[δx+3̂,y(1 − δx3,Ls

) − δx−3̂,y(1 − δx3,1)] ≡ −∂†3xy (6)

−∂̂2
3xy = −

1

2
[δx+3̂,y(1 − δx3,Ls

) + δx−3̂,y(1 − δx3,1) − 2δxy] (7)

≡ −(∂̂2
3xy)

†

It is important to note that D̂2 = D̂2† #=
∑

µ D2
µ and ∂̂2

3 = ∂̂2†
3 #= ∂3∂3.

In the Dirac basis γµ = σµ+1 ⊗ τ3, µ = 0, 1, 2 and γ3 = 11⊗ τ2, for mi = 0
we can write

D =

(

σµ+1Dµ − (D̂2 + M + ∂̂2
3) −i∂3

i∂3 −σµ+1Dµ − (D̂2 + M + ∂̂2
3)

)

(8)

Use the identity

det

(

X Y
W Z

)

= detXdet(Z − WX−1Y ) (9)

where X, Y, Z, W are all square blocks of even dimension to write

detD = det(−i∂3)det(i∂3 − (DW + ∂̂2
3)

†(−i∂3)
−1(DW + ∂̂2

3)) (10)
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but on walls
obstruction to proving  det𝒟 > 0

 RHMC with measure  for det(𝒟†𝒟) N = 1

NB , not ,  
ie. links are non-compact and non-unitary

Dμ ∝ (1 + iAμ) eiAμ
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ForN ¼ 1 at the strongest coupling examined g−2 ¼ 0.3,
hψ̄ψðmÞi is a factor of two or greater than data from
the next strongest coupling, and a linear extrapolation
limm→0hψ̄ψðmÞi ¼ Σ ≈Oð0.1Þ ≠ 0 looks reasonable, par-
ticularly if the 163 point is used at m ¼ 0.01. This would be
consistent with the spontaneous breakdown of U(2) sym-
metry due to bilinear condensation at this coupling, although
nonlinear extrapolations to a symmetric limit hψ̄ψi ¼ 0
cannot at this stage be excluded. If symmetry is indeed
broken, on general grounds significant finite volume cor-
rections are expected in the mesoscopic regime mΣV ≲ 1,
and the data support this; note that the dimensionless
combination mΣV ≈ 1.5 for the 123, m ¼ 0.01 point.
In summary, Fig. 10 presents strong evidence for the

Thirring model with g−2 ¼ 0.3 to exhibit qualitatively very
different behavior from that observed at weaker couplings,
due to a significant enhancement of fermion-antifermion
pairing. Finite-Ls corrections are also much more important
in this regime, as illustrated in Fig. 9, and an Ls → ∞
extrapolation proves key to interpreting the data. The
simplest explanation is that U(2) symmetry is spontane-
ously broken at the strongest coupling examined, imply-
ing Nc > 1.

B. The approach to Ls → ∞
It is interesting to compare the m-dependence of the

decay constant Δ, implicitly defined in (21), between
different couplings. Of course, for a fixed window in Ls,
Δ is easier to pin down for data with large curvature,
corresponding to strong couplings and larger masses. For
this reason the large uncertainties on Δ from the weaker
couplings g−2 ¼ 0.5, 0.6 do not yield much of use; however
results from the stronger couplings g−2 ¼ 0.3, 0.4 plotted
in Fig. 11 show a marked contrast. Within sizeable
uncertainties Δðg−2 ¼ 0.4Þ ≈ 0.06–0.07 is approximately
m-independent, whereas Δðg−2 ¼ 0.3Þ ∝ m, the linearity

becoming more convincing still if the 163 value is taken at
m ¼ 0.01. The straight line fit shown yields a slope
1.33(15), with intercept consistent with passing through
the origin. This is another hint of a qualitative difference in
the behavior of the model at these two couplings.
Another measure for the approach to the Ls → ∞ limit

is the residual δh defined in (14). As shown in [15], it
quantifies the difference between the U(2)-equivalent con-
densates hψ̄ψi and the measured ihψ̄γ3ψi, and should
therefore vanish in a simulation respecting U(2) symmetry.
Results for δhðLsÞ for various couplings are shown on a log
scale in Fig. 12. Just as in quenched QED3 (see Fig. 2 of
[15]), δh is strongly coupling-dependent. In all cases the
data is consistent with an asymptotic behavior δh ∝ e−cLs

implying U(2) restoration in the large-Ls limit; however
the restoration becomes slower as coupling increases. There
is a marked difference between g−2 ¼ 0.6, where δh is
roughly m-independent, and g−2 ¼ 0.3 where data from all
5 masses are plotted, and c found apparently to decrease
systematically with m. At this strong coupling for m ¼
0.01 δh is of the same order of magnitude as the signal
ihψ̄γ3ψi even for Ls ¼ 48. For the larger 163 lattice, c is
smaller still; a similar trend was observed in [15].
The findings of both Figs. 11 and 12 are consistent with

the extrapolation Ls → ∞ used to obtain Fig. 10, and
moreover both display qualitative differences between
strong and weak coupling, thus supporting the argument
that g−2 ¼ 0.3 and g−2 ¼ 0.6 lie in different phases.
However the approach to the large-Ls limit becomes very
slow in the symmetry broken phase in the limit m → 0,
which will almost certainly present practical difficulties in
future more refined simulations, and may also raise more
conceptual problems related to the existence of a U(2)-
symmetric limit at strong coupling.
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FIG. 11. The decay constant ΔðmÞ obtained from fits to (21) for
g−2 ¼ 0.3, 0.4.
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FIG. 12. The residual δhðLsÞ, defined in (14), for various g−2

and m ¼ 0.01. For g−2 ¼ 0.3 results for all 5 mass values are
shown, along with 163, m ¼ 0.01 (open circles). For g−2 ¼ 0.6
results for m ¼ 0.05 are shown as open circles.
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U(2) symmetry restoration requires residual δh → 0

Qualitatively different at strong and weak coupling, 
and slow…peak at criticality is roughly as expected, once an empirical

rescaling is applied. However, there are features of Fig. 9
which are clearly problematic: the m ordering of the data is
opposite to model expectations, with χl increasing with m
over the whole β range studied, and the convergence of χl
curves with different m as β grows large seen in Fig. 11 is
not observed. We postpone further discussion of these
issues to Sec. IV.
Next we discuss the approach to recovery of U(2)

symmetry expected as Ls → ∞. Reference [22] introduced
a residual δh defined in terms of the 2þ 1þ 1-dimensional
fields as follows:

δhðLsÞ ¼ ImhΨ̄ðx; s ¼ 1Þiγ3Ψðx; s ¼ LsÞi
¼ −ImhΨ̄ðx; s ¼ LsÞiγ3Ψðx; s ¼ 1Þi: ð18Þ

In Ref. [22] 2δh was found to furnish a lower bound for the
difference between hψ̄ψi and hψ̄iγ3ψi, and to vanish
∝ e−cLs for quenched QED3. In the Thirring model,
δhðLsÞ for various couplings was presented in Fig. 12 of
Ref. [14]. While in all cases δh still decreases with Ls, it
grows larger as coupling increases, and by β ¼ 0.3 its
decay constant c even develops a dependence on m.
Figure 12 taken at fixed Ls ¼ 48 confirms that the m
dependence of δh does indeed set in for β ≲ 0.4, and that δh
continues to grow as β decreases, suggesting that the
recovery of U(2) symmetry will be an ever-increasing
challenge in the symmetry-broken phase as m → 0.
Finally, Fig. 13 shows results for the bosonic auxiliary

action density ð2g2Þ−1hA2
μi. As discussed in Ref. [14], for

DWFs with the bulk formulation of the Thirring model
there is no simple interpretation in terms of a local four-
fermion condensate available; rather we regard it as an extra
observable sensitive to light fermion dynamics. Its behavior
is nonmonotonic, with a minimum at β ≃ 0.46 before rising
to approach and then exceed the free-field value 3

2 at

β ≃ 0.24. The notable feature of Fig. 13 is the fermion
mass dependence; broadly speaking the departure from the
free-field result increases with decreasing m (although the
m ordering of the data is somewhat noisy), the effect being
most pronounced for 0.3≲ β ≲ 0.4 immediately above the
suspected critical region.

C. Properties of the associated overlap operator

The equivalence of DWFs [21,27] and the (truncated)
overlap operator [28] is well established in 3þ 1D, e.g.,
[29]. This equivalence is further shown in 2þ 1D [24] for
both the regular mass term mψ̄ψ and the linearly inde-
pendent twisted mass terms imψ̄γ3;5ψ introduced above. As
such, the locality of the domain wall operator in the target
dimensionality can be demonstrated by showing the local-
ity of the overlap operator.
We use the Shamir and Wilson formulations of the

overlap operator with twisted mass −imψ̄γ3ψ given by

D3
OLðmÞ ¼ 1 − imγ3

2
þ 1þ imγ3

2
VS=W ð19Þ
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FIG. 11. Susceptibility χlðβ; mÞ obtained by differentiation of
the EoS (16). The inset shows the “corrected” version discussed
in Sec. IV.

FIG. 12. The U(2)-breaking residual δhðβ; mÞ on 163 × 48.

FIG. 13. Auxiliary action density ð2g2Þ−1hA2
μi vs β on

163 × 48. The dashed line through thema ¼ 0.005 data is merely
to guide the eye.
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on  123 × Ls → ∞ as a function of  on β ≡ ag−2 163 × 48

δh = Im⟨Ψ̄(1)γ3Ψ(Ls)⟩ ≈
1
2 (⟨ψ̄ψ⟩ − i⟨ψ̄γ3ψ⟩)



Need to improve control over Ls → ∞

• Partial Quenching (PQ):  

• Use a better kernel in : Shamir → Wilson 

• better rational approximation to sgn:  

       hyperbolic tangent (HT)→ Zolotarev (Z)

Ls(sea) < Ls(valence)

Dov



Partial Quenching

Shamir kernel, , 
   24, 60, 96

123

Ls(sea) = 24,60,96 Ls(valence) =
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Figure 9.17: Dynamic condensate plots with the Shamir kernel varying Ls. Left
panel: C vs �. Right panel: C vs m.

Following the intuition that there may be no requirement for the auxiliary field to be

generated with such a stringent Ls value, we look at partially quenched condensates in

fig. 9.18. In the left panel, the � = 0.4 case is considered. Fig. 9.17 indicates that the

solution is Ls converged by Ls = 60. To the two curves with sea and valence fermions

calculated with the same Ls values, are added curves where the valence fermions, and

hence the condensate is measured, with a di↵erent Ls value. In the first additional

curve, the auxiliary fields are generated with Ls = 24 and the measurements are made

with Ls = 60. In the second, we reverse the procedure and generate the auxiliary fields

with Ls = 60 and measure with Ls = 24. Pleasingly, it seems su�cient to use the

Ls = 24 auxiliary field to capture the converged Ls measurement. On the other hand,

there seems to be nothing to be gained from overextending the Ls value of the auxiliary

field if it is not to be matched in the measurement. This pattern seems to be matched

in the right panel, considering the � = 0.24 case, although slightly less convincingly at

the m = 0.01 datapoint, even though the Ls limit has not been reached. Given the

high costs of dynamically generating the auxiliary fields, this represents a significant

potential in compuational cost cutting.
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Figure 9.18: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ls = X, and the measurements were taken

with Ls = Y . Left panel: � = 0.4. Right panel: � = 0.24.

Bilinear condensate signal determined by Ls(valence)
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which would have been a disappointing result. Of course, this data only hints at the

similarity of the results, and more and better data is required. Results in the next chap-

ter will suggest a further refinement of the window should be considered, ie smaller m

values with a more focused � range around the critical value.

We note the significant di↵erence with the values given in [8]. The exponents found

with a Shamir kernel on 162 ⇥ 16 mesh were �c = 0.320(5), �m = 0.320(5), � = 4.17(5),

corresponding to ⌫ = 0.55(1) and ⌘ = 0.16(1). Further comparison with a staggered

formulation may be considered which give �m = 0.57(2), � = 2.75(9), corresponding to

⌫ = 0.60(4) and ⌘ = 0.71(3). We attribute the di↵erence to the lack of Ls convergence

in earlier work. Although extrapolation techniques were utilized, as hinted at in section

8.1, we suspect the Ls convergence curves may not be amenable to such techniques.

Figure 9.26: Equation of State fits with di↵erent condensate data windows for Shamir
HT formulations. The critical coe�cients at the top of each plot are tabulated in table

9.2. Ls = 300 for the measurements in all cases.

 PQ, Shamir, HT123

m = A(g−2 − g−2
c )⟨ψ̄ψ⟩δ−1/β + B⟨ψ̄ψ⟩δ

g−2
c = 0.339(24); β = 0.89(26); δ = 2.07(40)

ν = 0.91(28); η = 0.96(18)

Ls(sea) = 96, Ls(valence) = 300

Equation 
of State

fitted critical  
parameters

order parameter 
requires  

hence measurements 
taken with 

D−1[A]

m > 0

⇒



Better kernel Dov(𝒜)

with Wilson kernel  DW [Aμ] = γμDμ − D̂2 − M𝒜 = DW

Replace Shamir kernel
𝒜 = (2 + DW)−1DW

DSHT =

DW + I −P− 0 imP+

−P+ DW + I −P− 0
0 −P+ DW + I −P−

−imP− 0 −P+ DW + I

DWHT =

DW + I (DW − I )P− 0 −im(DW − I )P+

(DW − I )P+ DW + I (DW − I )P− 0
0 (DW − I )P+ DW + I (DW − I )P−

+im(DW − I )P− 0 (DW − I )P+ DW + I
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Figure 9.10: Min/max Shamir kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

Plots for the Wilson kernel are shown in Figure 9.11, again with the bars showing the data

point maxima and minima rather than standard deviation. These eigenvalues provide

a guide for choosing the Zolotarev range to be used in the overlap operator, unless the

range is to be reset for every auxiliary configuration. Since the latter is costly, especially

for the dynamic step, it is generally preferable to choose a fixed range. Although the

eigenvalues are strictly only bounded below by zero, a practical range can be identified

from the plots. In practice, we have found stricter adherence to the upper bound is more

important to the evaluation of the condensate than the lower bound.

Figure 9.11: Min/max Wilson kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

The independence from Ls, at least for all Ls above an unexplored lower bound, com-

bined with our a priori belief that the condensate measurements will require signif-

icantly higher Ls values, suggests the possibility of using di↵erent Ls values for the

sea-fermions (the Dirac operator used in the generation of the auxiliary fields) and the

valence fermions (the Dirac operator used for the condensate measurements).
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Figure 9.10: Min/max Shamir kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

Plots for the Wilson kernel are shown in Figure 9.11, again with the bars showing the data

point maxima and minima rather than standard deviation. These eigenvalues provide

a guide for choosing the Zolotarev range to be used in the overlap operator, unless the

range is to be reset for every auxiliary configuration. Since the latter is costly, especially

for the dynamic step, it is generally preferable to choose a fixed range. Although the
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from the plots. In practice, we have found stricter adherence to the upper bound is more

important to the evaluation of the condensate than the lower bound.
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Figure 9.11: Min/max Wilson kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

The independence from Ls, at least for all Ls above an unexplored lower bound, com-

bined with our a priori belief that the condensate measurements will require signif-

icantly higher Ls values, suggests the possibility of using di↵erent Ls values for the

sea-fermions (the Dirac operator used in the generation of the auxiliary fields) and the

valence fermions (the Dirac operator used for the condensate measurements).

Shamir λmax, λmin Wilson λmax, λmin



Better rational approximation of sgn(𝒜)
sgn(x) ≈ tanh(Ls tanh−1 x) =

1 − 𝒯HT

1 + 𝒯HT

sgn(x) ≈
1 − 𝒯Z

1 + 𝒯Z
≡ dx

∏Ls/2−1
m=1 (am − x2)

∏Ls/2
m=1 (dm − x2)

coefficients  depend on range of applicability of approximation  
and are given in terms of Jacobi elliptic functions
am, dm, d

𝒯HT = ( 1 − x
1 + x )

Ls

𝒯Z =
Ls

∏
s=1

1 − ωsx
1 + ωsx

DWZ =

ω1DW + I (ω1DW − I )P− 0 −im(ω1DW − I )P+

(ω2DW − I )P+ ω2DW + I (ω2DW − I )P− 0
0 (ω3DW − I )P+ ω3DW + I (ω3DW − I )P−

+im(ω4DW − I )P− 0 (ω4DW − I )P+ ω4DW + I

Optimal DWF
T-W Chiu PRL90 (2003) 071601

Zolotarev 
approximation

Euclidean Cayley transformReplace

with
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limit). This is shown in the right panel where the convergence plots are identical for the

corresponding formulations. 122 ⇥ 12 lattices were used and the auxiliary field instance

was generated, with the quenched assumption, with weak coupling of � = 2. Not only

do we want each formulation to converge with Ls, we want all Shamir formulations to

convergence to the same values, and all Wilson formulations to converge to the same

values, although these will be distinct. Happily, we find this to be the case.
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5 10 15 20 25 30 35 40

er
r

Ls

SM1,HT
SM3,HT
SM1,Z
SM3,Z

WM1,HT
WM3,HT
WM1,Z
WM3,Z

Figure 7.1: Dirac Operator Convergence. Left panel: Direct evaluation of the overlap
operator (eqn. 3.55 and variants). Right panel: Indirect calculation of the overlap

operator through KDW (eqn. 3.91) and KM3
DW (eqn. 3.92)

7.2 Locality of Overlap Operator

Overlap and domain wall fermions operators in the Ls ! 1 limit obey the GW relation.

In order to recover the U(2) symmetry in the continuum limit a ! 0, we must have

the GW terms aD�5D (eqn.3.19) and equivalently the transform terms aD
2 (eqn.3.21)

vanishing in the same limit. A su�cient condition for this to be the case is the Dirac

operator being exponentially local, which also ensure the uniqueness of the continuum

limit [52]. The overlap operator is a dense matrix and manifestly non-local and hence

exponential locality is certainly not obvious. Proof that it is has been given for the

overlap operator in 3+1d in the weakly coupled region for QCD [52], and numerical

support was also provided. The proof depends on the positive real boundedness of

H†H, where H is the kernel of the sign function, and makes a separate case for when

the smallest eigenvalues go to zero. However, the upper boundedness stems from the

unitarity of the gauge links U = ei✓. However, with the non-unitarity U = 1 + i✓, there

is no such bound. Further, we are considering a strongly coupled region. Considering

these factors, it is not inevitable that locality will hold near a critical region, nor in an

unbounded model of di↵erent dimension.

To recover continuum U(2) symmetry as a ! 0, we require

errLs = |Dov;Lsψ − Dov;Ls−2ψ |

With

⇒



 Wilson, Ls(sea)=30HT, Ls(valence)=30Z
Zolotarev range [0.0005,20] 

123

m = A(g−2 − g−2
c )⟨ψ̄ψ⟩δ−1/β + B⟨ψ̄ψ⟩δ

g−2
c = 0.336(33); β = 1.04(29); δ = 2.08(33)
ν = 1.1(3); η = 0.95(15)
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case id Ls � �c �m � �2/dof
dw1 24 [0.20,0.6] 0.328(22) 1.06(19) 2.111(208) 0.189
dw2 30 [0.20,0.6] 0.326(26) 1.01(23) 2.132(267) 0.151
dw3 24 [0.22,0.55] 0.339(30) 1.07(27) 2.067(287) 0.106
dw4 30 [0.22,0.55] 0.336(33) 1.04(29) 2.078(325) 0.0899
dw5 24 [0.22,0.50] 0.355(37) 1.19(32) 1.942(294) 0.0738
dw6 30 [0.22,0.50] 0.349(40) 1.13(33) 1.979(339) 0.0694

Table 9.1: Equation of state critical exponents found with partially quenched Wilson
Zolotarev kernel for di↵erent � data range windows. Mass range is [0.01, 0.05].

Figure 9.25: Equation of State fits with di↵erent condensate data windows for Wilson
Zolotarev formulations. The critical coe�cients at the top of each plot are tabulated
in table 9.1. Left panel: uses Ls = 24 for measurements. Right panel: uses Ls = 30 for

measurements.

Note we have doubled the errors of the condensate measurement in the fit. As noted for

EoS:

fitted critical  
parameters



Funnies….
•Susceptibility   

previously showed inverted mass hierarchy 
χℓ = ⟨(ψ̄ψ)2⟩ − ⟨ψ̄ψ⟩2

limit of the model is now taken as β → β! > 0. In Ref. [11]
β! was taken to be the location of the maximum of
hψ̄ψðβÞi, enabling a model equation of state hψ̄ψðNÞi in
the effective strong-coupling limit and consequent predic-
tion ofNc. A decrease of hψ̄ψiβ→0 has also been reported in
simulations with SLAC fermions [17,18] and with DWFs
in a variant “surface” formulation of the model [20],
suggesting that strong-coupling lattice artifacts are a
generic feature of the Thirring model, and may have a
more general origin than that suggested by the large-N
approach. Be that as it may it will clearly be important to
establish a clear separation between β! and any βc
associated with a Thirring model QCP. From Fig. 8 we
might estimate β! ≈ 0.25, uncomfortably close, with cur-
rent resolution, to the βc estimates of Sec. III A.
At this point it is appropriate to discuss a technical aside.

In the RHMC algorithm described in Ref. [14], it is
necessary to calculate fractional powers of the fermion
kernel A ¼ M†M. In practice this is performed using a
rational approximation

Ap ≃ rpðAÞ ¼ α0 þ
XNpf

i¼1

αi
Aþ βi

; ð17Þ

where the coefficients αi, βi may be calculated using the
Remez algorithm implementation described in Ref. [26].
They are chosen so that over a spectral range ðλd; 50.0Þ,
jrpðxÞ − xpj < 10−6 for matrices needed during trajectory
guidance and < 10−13 for those needed in the Monte Carlo
acceptance step. For all work to date we have used
λd ¼ 10−4 corresponding to the smallest value of ðmaÞ2
explored, which translates to partial fraction numbers
Npf ¼ 12 (guidance) and Npf ¼ 25 (acceptance); however
one might question whether this is sufficiently accurate
for studies with ma ¼ 0.005. Accordingly we have per-
formed “enhanced” simulations at three β values with
Remez coefficients generated with λd ¼ 10−5, correspond-
ing to Npf ¼ 14 (guidance), and Npf ¼ 29 (acceptance).
As shown in Fig. 8, fortunately there appears to be no
significant difference with data calculated using the
previous λd ¼ 10−4.
Next we present data for the susceptibility χl defined in

Eq. (12), for the whole data set in Fig. 9 and for the lightest
ma ¼ 0.005 in Fig. 10. As might be anticipated, statistical
errors in χl are considerably larger than those for the
condensate, and accordingly we choose not to attempt an
Ls → ∞ extrapolation. However, again, the agreement
between results obtained using the default and enhanced
rational approximations seen in Fig. 10 is reassuring. For
each value of m χlðβÞ is nonmonotonic, with the peak
shifting to stronger coupling as m decreases in accord with
expectations for a second derivative of the free energy at a
critical point; this is corroborated by the model prediction
obtained by differentiation of Eq. (16) with respect to m,
and plotted using the fitted parameters in Fig. 11. Figure 10
suggests that the location and even the sharpness of the

FIG. 8. hψ̄ψðβÞi for ma ¼ 0.005 on 163 × 48. The dashed line
is the same EoS fit shown in Fig. 7. Also shown is the result of a
pilot simulation with β ¼ 0.3, Ls ¼ 64.

FIG. 9. Susceptibility χlðβ; mÞ on 163 × 48.

FIG. 10. Susceptibility χlðβÞ for ma ¼ 0.005 on 163 × 48. The
dashed line is calculated using the same EoS fit shown in Fig. 7,
multiplied by an empirical factor 0.014. Also shown is the result
of a pilot simulation with β ¼ 0.3, Ls ¼ 64.
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Figure 10.9: Dynamic Shamir susceptilbilites calculated with eqn. 10.4. Left panel:
HT Ls = 60. Right panel: HT Ls = 96 formulation.

Figure 10.10: Dynamic Shamir susceptilbilites calculated with eqn. 10.4. Partially
quenched HT Ls = 300.

PQ Shamir HT 
 163 × 300
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Figure 10.6: Quenched Wilson susceptilbilites calculated with eqn. 10.4. Left panel:
Z Ls = 24 formulation. Right panel: HT Ls = 36 formulation.

Figure 10.7: Quenched Shamir susceptilbilites calculated with eqn. 10.4. Left panel:
HT Ls = 300 formulation. Right panel: HT Ls = 96 formulation.

Figure 10.8: Dynamic Wilson susceptilbilites calculated with eqn. 10.4. Left panel:
Partially quenched Z Ls = 24 formulation. Right panel: HT Ls = 36 formulation.

Wilson HT 
 123 × 36

It looks as if order parameter  
fluctuations are particularly 

-sensitiveLs



123 Shamir 
Ls=300 (HTv)

123 Wilson
Ls=30 (HTs&Zv)

163 Shamir 
HT Ls=8,…,80

163 staggered
HMC

staggered 
FSS (Bag)

gc-2 0.339(24) 0.336(33) 0.283(1) - -
β 0.89(26) 1.04(29) 0.320(5) 0.57(2) 0.70(1)
δ 2.07(40) 2.08(33) 4.17(5) 2.75(9) 2.63(2)
ν 0.91(28) 1.1(3) 0.55(1) 0.71(3) 0.85(1)
η 0.96(18) 0.95(15) 0.16(1) 0.60(4) 0.65(1)

Summary

• Two different DWF regularisations (Shamir, Wilson)  
   of N=1 give compatible results

• Results clearly distinct from previous based on uncontrolled  

• Is  (Dirac, DWF)  
  distinct from  (Kähler-Dirac, staggered) ? 

• Promising, by need larger volumes, higher statistics…

Ls → ∞

U(2) → U(1) ⊗ U(1)
U(1) ⊗ U(1) → U(1)
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