Motivation

• Floating point arithmetic is non-associative

\[(a + b) + c \neq a + (b + c)\]

• Parallel reductions will yield different answers whenever we change otherwise seemingly innocuous parameters

• Is this a problem?
 • Won’t answers only be different to floating point epsilon?

• Lattice QCD calculations can exhibit chaotic behavior
 • Small changes can cause divergent HMC phase space traversal

• Without exact reproducibility we lose the ability to repeat experiments (simulations)
 • This is a failure of the scientific method
 • To fully specify a given physics ensemble, one would need to fully specify the order of all summation operations
 • Debugging….
Sources of Chaos

- Data ordering
 - Structure of Arrays vs Array of Structures vs SIMD ordering
- Architecture specifics
 - Floating point rounding employed
 - Flush denormals to zero?
- Multi-process decomposition
 - Number of processes
 - Process grid (e.g., 4x4x4x4 vs 2x4x4x8)
- Hierarchical many-core processors (GPUs)
 - Thread block size
 - Number of thread blocks
 - Work items per thread
- Stencil application (Dslash)
 - Local gather vs halo gather
QUDA

• “QCD on CUDA” - http://lattice.github.com/quda (open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.
• Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.
• Maximize performance
 – Mixed-precision methods
 – Autotuning for high performance on all CUDA-capable architectures
 – Multigrid solvers for optimal convergence
 – NVSHMEM for improving strong scaling
• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)
• A research tool for how to reach the exascale (and beyond)
 – Optimally mapping the problem to hierarchical processors and node topologies
Tree Reduction Algorithm

- Classic parallel reduction algorithm
 - For data set \(v[N] \), launch \(N/2 \) threads
 - Each thread performs pairwise reduction \(u[t] = \text{reduce}(v[t], v[t + N/2]) \)
 - Store result and repeat with half the number of threads
 - Complete reduction performed in \(\log(N) \) steps

- Modern optimized form
 - Fixed set of \(T \) threads rake over the data
 - Each thread accumulates \(N/T \) terms locally
 - Then perform tree summation between threads

- If we change \(T \) we will alter the order of summation...

https://github.com/NVIDIA/cub
• Run same solver 10 times with different GPU thread counts
• BiCGStab(l) with Wilson fermions
 • $V = 16^3 \times 64$
 • 2 MPI processes, 2 GPUs
 • Target relative residual 2×10^{-16}
• Double precision reductions
 • 9 unique convergence histories
• Residual is insensitive to low-mode errors
 • “Equivalent” solutions may have drastically different error components
 • Low modes “tickle” instabilities in the MD integration

Solver Chaos

![Graph showing convergence histories and iteration counts](image)
Can we fix it using higher precision?

- Double precision is not the limit

```c
struct float64_t {
    unsigned int mantissa : 52;
    unsigned int exponent : 11;
    unsigned int sign : 1;
};
```

IEEE binary64

- 64-bits per real
- 53-bit mantissa => Precision $\varepsilon \sim 1 \times 10^{-16}$
- 8-bit exponent => Range $\in [2 \times 10^{-208}, 2 \times 10^{308}]$

```c
struct float128_t {
    unsigned int mantissa : 113;
    unsigned int exponent : 15;
    unsigned int sign : 1;
};
```

IEEE binary128

- 128-bits per real
- 113-bit mantissa => Precision $\varepsilon \sim 2 \times 10^{-34}$
- 15-bit exponent => Range $\in [3 \times 10^{-4932}, 1 \times 10^{4932}]$

- Most modern processors do not support IEEE fp128.......

Double-double

- Use two doubles to emulate a quad
 - Effective 107 bits of precision (nearly as much as binary128)

- double-double addition operation costs 20 double precision additions
 - But flops are free and everything’s bandwidth?

```c
__device__ __host__ __forceinline__
dbldbl add_dbldbl (dbldbl a, dbldbl b) {
  dbldbl z;
  double t1, t2, t3, t4, t5, e;
  t1 = dadd_rn (a.y, b.y);
  t2 = dadd_rn (t1, -a.y);
  t3 = dadd_rn (dadd_rn (a.y, t2 - t1), dadd_rn (b.y, -t2));
  t4 = dadd_rn (a.x, b.x);
  t2 = dadd_rn (t4, -a.x);
  t5 = dadd_rn (dadd_rn (a.x, t2 - t4), dadd_rn (b.x, -t2));
  t3 = dadd_rn (t3, t4);
  t4 = dadd_rn (t1, t3);
  t3 = dadd_rn (t1 - t4, t3);
  t3 = dadd_rn (t3, t5);
  z.y = e = dadd_rn (t4, t3);
  z.x = dadd_rn (t4 - e, t3);
  return z;
}
```

Double-double addition function
Reworking QUDA’s Reductions...

- Old
 - Host types hard coded to double precision
 - Only naive tree summation algorithm implemented

- New abstraction
 - Reduction type
 - Defines the precision of any sum reductions
 - Separate type for host scalar type
 - e.g., CG’s alpha, beta coefficients
 - Parallel summation algorithm
 - e.g., naive, Kahan, reproducible
 - All configured by CMake build system
Double-double Reductions

QUDA Implementation

Asymptotic 3% overhead

Performance on Norm2 reduction kernel, fp64 inputs
(Quadro GV100, CUDA 12.1)

Relative Deviation between CPU and GPU Norm2 reductions
Solver Chaos

- Run same solver 10 times with different GPU thread counts
- BiCGStab(l) with Wilson fermions
 - \(V = 16^3 \times 64 \)
 - 2 MPI processes, 2 GPUs
 - Target relative residual \(2 \times 10^{-16} \)
- Double precision reductions
 - 9 unique convergence histories
- Double-double reductions
 - 6 unique convergence histories
Reproducible Summation

Ahrens et al, 2020

- Reproducible Summation (aka K-fold summation)
 - Bin the components of each number into bins of predefined exponent range
 - Each binned component is known as a “slice”
- We can sum the slices in the same bin exactly, so long as we don’t overflow
 - Abusing floating point to behave as integer (integer is associative)
 - Given a bin width of \(W \) bits, and precision \(P \) bits, we can sum \(2^{P-W} \) slices exactly
 - E.g., FP32 (single precision)
 - \(P = 24, W = 13 \)
 - We can add \(2^{11} \) slices together exactly
Reproducible Summation
Ahrens et al, 2020

- When summing slices, each summation represented by two bins:
 - Primary: where each slice’s value is summed to
 - Carry: store any overflow bits from summation to primary

- Algorithm is exact if we fully cover the range of the underlying floating-point representation
 - Not feasible for double precision (way too many bins required)

- Only retain a fixed number of bins K (typically $K = 3$)
 - So each real number requires $K \times (\text{primary} + \text{carry})$ values

- Maximum bin based on set maximum value
 - Avoid pre-computing the set maximum by tracking maximum value to date
 - If new maximum encountered shift bins and drop least significant bins as needed

- Once summation of slices is complete, reconstruct the final floating point value

- Absolute error bound: $E \leq 2^{-(K-1)W} N \max x_i$
 - FP64: $E \leq 2^{-27} \varepsilon N \max x_i$ ($K = 3, W = 40$)
 - Compared to standard summation $E \leq (N - 1) \varepsilon \sum_i \|x_i\|$
Reproducible Summation

- Compare summation of same set under a random permutation
- Compare to exactly computed reference

Positive Uniform Random (N = 10^7, 1000 permutations)

<table>
<thead>
<tr>
<th>Method</th>
<th>Maximum Relative Error</th>
<th>Maximum Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproducible (double)</td>
<td>3.1×10^{-17}</td>
<td>3.7×10^{-14}</td>
</tr>
<tr>
<td>Kahan (double)</td>
<td>4.4×10^{-17}</td>
<td>1.2×10^{-13}</td>
</tr>
<tr>
<td>Parallel summation (double)</td>
<td>1.4×10^{-15}</td>
<td>4.3×10^{-12}</td>
</tr>
<tr>
<td>Reproducible (float)</td>
<td>9.7×10^{-9}</td>
<td>2.0×10^{-5}</td>
</tr>
<tr>
<td>Kahan (float)</td>
<td>2.9×10^{-8}</td>
<td>7.3×10^{-4}</td>
</tr>
<tr>
<td>Parallel summation (float)</td>
<td>5.6×10^{-7}</td>
<td>1.9×10^{-3}</td>
</tr>
</tbody>
</table>

Sine Wave (N = 10^7, 1000 permutations)
Reproducible Summation on GPUs
Algorithm as presented not efficient for parallel architectures

- Thread bin indices computed dynamically based on present summand value
 - Cannot dynamically index registers leading to spilling of bins into cache hampering performance
 - Solution: use switch table instead of direct array indexing

- Each thread’s local maximum may differ dramatically
 - Bin shifting overhead when reduction between threads is performed
 - Solution: when thread maximum is reset, reset for entire warp

- Each thread may load numbers of very different magnitude leading to different bin indices
 - E.g., index differs between threads in a warp
 - Not a problem on SIMT, perhaps a problem on SIMD?
Reproducible Summations on GPUs

QUDA Implementation

Performance on Norm2 reduction kernel, fp64 inputs

(Quadro GV100, CUDA 12.1)

Asymptotic 3% overhead

Relative Deviation between CPU and GPU Norm2 reductions

Reproducible reductions are bitwise identical as expected
Reproducible Summations on GPUs
QUDA Implementation

Aside: H100 can pull over 3 TB/s

Performance on Norm2 reduction kernel, fp64 inputs
(Quadro GV100, CUDA 12.1)

Relative Deviation between CPU and GPU Norm2 reductions
Reproducible reductions are bitwise identical as expected
• Run same solver 10 times with different GPU thread counts

• BiCGStab(l) with Wilson fermions
 • $V = 16^3 \times 64$
 • 2 MPI processes, 2 GPUs
 • Target relative residual 2×10^{-16}

• Double precision reductions
 • 9 unique convergence histories

• Double-double reductions
 • 6 unique convergence histories

• Reproducible reductions
 • 1 unique convergence history
Future Work

- Add support for reproducible 128-bit summation

- Optimize
 - Partial reduction memory writing (will improve performance for intermediate sizes)
 - MPI Allreduce (presently implemented using all gather and local sum)

- Reproducible algorithm abuses floating point to behave as integers
 - Why not just use actual integers?
 - Integers have a number of advantages
 - No wasted bits for storing the exponent
 - Fewer resources required for same precision (less registers, less memory traffic)
 - NVIDIA GPUs have hardware-accelerated warp-wide integer reductions (Ampere onwards)
Summary

• Lack of floating point associativity leads to lack of reproducibility for parallel computations

• Evolved QUDA’s reduction framework to allow for arbitrary reduction types and arbitrary summation algorithm

• 128-bit floating-point precision not sufficient to ensure reproducibility

• Deployed optimized reproducible reduction algorithm for bit-wise reproducible results

• Reproducibility doesn’t need to cost the earth

• Restoration of the Scientific Method

https://github.com/lattice/quda/tree/feature/reproducible