
1

Restoring Reproducibility
to Lattice QCD
Kate Clark, Lattice 2023

2

Motivation

• Floating point arithmetic is non-associative

• Parallel reductions will yield different answers whenever we change otherwise seemingly innocuous parameters

• Is this a problem?

• Won’t answers only be different to floating point epsilon?

• Lattice QCD calculations can exhibit chaotic behavior

• Small changes can cause divergent HMC phase space traversal

• Without exact reproducibility we lose the ability to repeat experiments (simulations)

• This is a failure of the scientific method

• To fully specify a given physics ensemble, one would need to fully specify the order of all summation operations

• Debugging….

(a + b) + c ≠ a + (b + c)

3

Sources of Chaos

• Data ordering

• Structure of Arrays vs Array of Structures vs SIMD ordering

• Architecture specifics

• Floating point rounding employed

• Flush denormals to zero?

• Multi-process decomposition

• Number of processes

• Process grid (e.g., 4x4x4x4 vs 2x4x4x8)

• Hierarchical many-core processors (GPUs)

• Thread block size

• Number of thread blocks

• Work items per thread

• Stencil application (Dslash)

• Local gather vs halo gather

4

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend

for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.
• Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.
• Maximize performance
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Multigrid solvers for optimal convergence
– NVSHMEM for improving strong scaling
• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)
• A research tool for how to reach the exascale (and beyond)
– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps

!9

QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, etc.
• Various solvers for all major fermionic discretizations, with multi-GPU support
• Maximize performance

– Mixed-precision methods (runtime specification of precision for maximum flexibility)
– Exploit physical symmetries to minimize memory traffic
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multi-RHS solvers
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale (and beyond)

5

Tree Reduction Algorithm

• Classic parallel reduction algorithm

• For data set v[N], launch N/2 threads

• Each thread performs pairwise reduction u[t] = reduce(v[t], v[t + N/2])

• Store result and repeat with half the number of threads

• Complete reduction performed in log(N) steps

• Modern optimized form

• Fixed set of T threads rake over the data

• Each thread accumulates N/T terms locally

• Then perform tree summation between threads

• If we change T we will alter the order of summation…

https://github.com/NVIDIA/cub

0 2000 4000 6000 8000 10000
Number of Iterations

1e-16

1e-12

1e-08

0.0001

1

| r
 |

/ |
 b

 |

Tree summation (64-bit)

6

Solver Chaos

• Run same solver 10 times with different
GPU thread counts

• BiCGStab(l) with Wilson fermions

• V = 163x64

• 2 MPI processes, 2 GPUs

• Target relative residual 2x10-16

• Double precision reductions

• 9 unique convergence histories

• Residual is insensitive to low-mode errors

• “Equivalent” solutions may have
drastically different error
components

• Low modes “tickle” instabilities in the
MD integration

7

Can we fix it using higher precision?

• Double precision is not the limit

• Most modern processors do not support IEEE fp128……..

struct float128_t {
 unsigned int mantissa : 113;
 unsigned int exponent : 15;
 unsigned int sign : 1;
};

IEEE binary64

64-bits per real

53-bit mantissa => Precision

8-bit exponent => Range

ε ∼ 1 × 10−16

∈ [2 × 10−208, 2 × 10308]

struct float64_t {
 unsigned int mantissa : 52;
 unsigned int exponent : 11;
 unsigned int sign : 1;
};

IEEE binary128

128-bits per real

113-bit mantissa => Precision

15-bit exponent => Range

ε ∼ 2 × 10−34

∈ [3 × 10−4932, 1 × 104932]

8

Double-double

• Use two doubles to emulate a quad

• Effective 107 bits of precision (nearly as much as binary128)

• double-double addition operation costs 20 double precision additions

• But flops are free and everything’s bandwidth?
/* Compute high-accuracy sum of two double-double operands. In the absence of
 underflow and overflow, the maximum relative error observed with 10 billion
 test cases was 3.0716194922303448e-32 (~= 2**-104.6826).
 This implementation is based on: Andrew Thall, Extended-Precision
 Floating-Point Numbers for GPU Computation. Retrieved on 7/12/2011
 from http://andrewthall.org/papers/df64_qf128.pdf.
*/
__device__ __host__ __forceinline__ dbldbl add_dbldbl (dbldbl a, dbldbl b)
{
 dbldbl z;
 double t1, t2, t3, t4, t5, e;
 t1 = dadd_rn (a.y, b.y);
 t2 = dadd_rn (t1, -a.y);
 t3 = dadd_rn (dadd_rn (a.y, t2 - t1), dadd_rn (b.y, -t2));
 t4 = dadd_rn (a.x, b.x);
 t2 = dadd_rn (t4, -a.x);
 t5 = dadd_rn (dadd_rn (a.x, t2 - t4), dadd_rn (b.x, -t2));
 t3 = dadd_rn (t3, t4);
 t4 = dadd_rn (t1, t3);
 t3 = dadd_rn (t1 - t4, t3);
 t3 = dadd_rn (t3, t5);
 z.y = e = dadd_rn (t4, t3);
 z.x = dadd_rn (t4 - e, t3);
 return z;
}

Double-double addition function

9

Reworking QUDA’s Reductions…

• Old

• Host types hard coded to double precision

• Only naive tree summation algorithm implemented

• New abstraction

• Reduction type

• Defines the precision of any sum reductions

• Separate type for host scalar type

• e.g., CG’s alpha, beta coefficients

• Parallel summation algorithm

• e.g., naive, Kahan, reproducible

• All configured by CMake build system

10

Double-double Reductions
QUDA Implementation

Performance on Norm2 reduction kernel, fp64 inputs

(Quadro GV100, CUDA 12.1)

Relative Deviation between CPU and GPU Norm2 reductions

Asymptotic 3% overhead

0 2000 4000 6000 8000 10000
Number of Iterations

1e-16

1e-12

1e-08

0.0001

1

| r
 |

/ |
 b

 |

Tree summation (64-bit)
Tree summation (128-bit)

11

Solver Chaos

• Run same solver 10 times with different
GPU thread counts

• BiCGStab(l) with Wilson fermions

• V = 163x64

• 2 MPI processes, 2 GPUs

• Target relative residual 2x10-16

• Double precision reductions

• 9 unique convergence histories

• Double-double reductions

• 6 unique convergence histories

12

Reproducible Summation
Ahrens et al, 2020

https://doi.org/10.1145/3389360

• Reproducible Summation (aka K-fold summation)

• Bin the components of each number into bins of predefined exponent range

• Each binned component is known as a “slice”

• We can sum the slices in the same bin exactly, so long as we don’t overflow

• Abusing floating point to behave as integer (integer is associative)

• Given a bin width of W bits, and precision P bits, we can sum 2P-W slices exactly

• E.g., FP32 (single precision)

• P = 24, W = 13

• We can add 211 slices together exactly

13

Reproducible Summation
Ahrens et al, 2020

https://doi.org/10.1145/3389360

• When summing slices, each summation represented by two bins:

• Primary: where each slice’s value is summed to

• Carry: store any overflow bits from summation to primary

• Algorithm is exact if we fully cover the range of the underlying floating-point representation

• Not feasible for double precision (way too many bins required)

• Only retain a fixed number of bins (typically)

• So each real number requires x (primary + carry) values

• Maximum bin based on set maximum value

• Avoid pre-computing the set maximum by tracking maximum value to date

• If new maximum encountered shift bins and drop least significant bins as needed

• Once summation of slices is complete, reconstruct the final floating point value

• Absolute error bound:

• FP64: ()

• Compared to standard summation

K K = 3

K

E ≤ 2−(K−1)W N max xi

E ≤ 2−27 ε N max xi K = 3, W = 40
E ≤ (N − 1) ε∑

i

∥xi∥

14

Reproducible Summation

• Compare summation of same set under a random permutation

• Compare to exactly computed reference

Positive Uniform Random (N = 107, 1000 permutations) Sine Wave (N = 107, 1000 permutations)

5.6 x 10-7

2.9 x 10-8

9.7 x 10-9

4.4 x 10-17

3.1 x 10-17

1.4 x 10-15

1.9 x 10-3

7.3 x 10-4

2.0 x 10-5

1.2 x 10-13

3.7 x 10-14

4.3 x 10-12

Maximum Relative Error Maximum Absolute Error

15

Reproducible Summation on GPUs
Algorithm as presented not efficient for parallel architectures

• Thread bin indices computed dynamically based on present summand value

• Cannot dynamically index registers leading to spilling of bins into cache hampering performance

• Solution: use switch table instead of direct array indexing

• Each thread’s local maximum may differ dramatically

• Bin shifting overhead when reduction between threads is performed

• Solution: when thread maximum is reset, reset for entire warp

• Each thread may load numbers of very different magnitude leading to different bin indices

• E.g., index differs between threads in a warp

• Not a problem on SIMT, perhaps a problem on SIMD?

switch (index) {
case 0: return p[0];
case 1: return p[1];
case 2: return p[2];
case 3: return p[3];
case 4: return p[4];
}

return p[index];

16

Reproducible Summations on GPUs
QUDA Implementation

Performance on Norm2 reduction kernel, fp64 inputs

(Quadro GV100, CUDA 12.1)

Relative Deviation between CPU and GPU Norm2 reductions

Reproducible reductions are bitwise identical as expected

Asymptotic 3% overhead

16

Reproducible Summations on GPUs
QUDA Implementation

Performance on Norm2 reduction kernel, fp64 inputs

(Quadro GV100, CUDA 12.1)

Relative Deviation between CPU and GPU Norm2 reductions

Reproducible reductions are bitwise identical as expected

Asymptotic 3% overhead

Aside: H100 can pull over 3 TB/s

0 2000 4000 6000 8000 10000
Number of Iterations

1e-16

1e-12

1e-08

0.0001

1

| r
 |

/ |
 b

 |

Tree summation (64-bit)
Tree summation (128-bit)
Reproducible (64-bit)

17

Solver Chaos

• Run same solver 10 times with different
GPU thread counts

• BiCGStab(l) with Wilson fermions

• V = 163x64

• 2 MPI processes, 2 GPUs

• Target relative residual 2x10-16

• Double precision reductions

• 9 unique convergence histories

• Double-double reductions

• 6 unique convergence histories

• Reproducible reductions

• 1 unique convergence history

18

Future Work

• Add support for reproducible 128-bit summation

• Optimize

• Partial reduction memory writing (will improve performance for intermediate sizes)

• MPI Allreduce (presently implemented using all gather and local sum)

• Reproducible algorithm abuses floating point to behave as integers

• Why not just use actual integers?

• Integers have a number of advantages

• No wasted bits for storing the exponent

• Fewer resources required for same precision (less registers, less memory traffic)

• NVIDIA GPUs have hardware-accelerated warp-wide integer reductions (Ampere onwards)

19

Summary

• Lack of floating point associativity leads to lack of reproducibility for parallel computations

• Evolved QUDA’s reduction framework to allow for arbitrary reduction types and arbitrary summation algorithm

• 128-bit floating-point precision not sufficient to ensure reproducibility

• Deployed optimized reproducible reduction algorithm for bit-wise reproducible results

• Reproducibility doesn’t need to cost the earth

• Restoration of the Scientific Method

https://github.com/lattice/quda/tree/feature/reproducible

