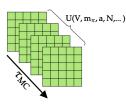
Progress in generating gauge ensembles with Stabilized Wilson Fermions

Anthony Francis

For OpenLat: Francesca Cuteri, Patrick Fritzsch, Giovanni Pederiva, Antonio Rago, Andrea Shindler, André Walker-Loud, Savvas Zafeiropoulos

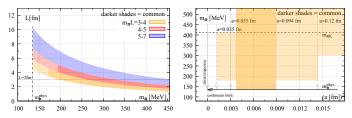
The 40th International Symposium on Lattice Field Theory (Lattice 2023) Fermilab, 31.07. - 04.08.2023



afrancis@nycu.edu.tw

Lattice QCD as an engine to progress Lattice provides key inputs for and impacts (small selection) - HVP and HLBL, - QCD Spectrum, - Resonances, - 2-,3-Scattering, - Decay Constants, - Exotic Hadrons, - Form Factors, - Matrix elements, - CKM Matrix, - BSM / DM, ...

Successes have been possible due to:


- Improved theoretical tools and understanding.
- Gauge configurations that enable controlled extrapolations for:
 - o chiral / quark mass effects
 - $\circ~$ finite size /~ volume effects
 - o discretisation effects and continuum limit

- Configurations generated via Markov Chain Monte Carlo:
 - Many samples to reduce *statistical uncertainties* Long trajectories to control *auto-correlations*
- "New physics": With a good set of configurations more research areas open up.
- Not having ensembles is often the road-block. Need infrastructure (e.g. MILC, JLDG, ILDG revitalised)

The quantity and quality of the set of configurations drives the accessible precision.

Simulation bounds - accessible parameter window

With a good set of configurations precision becomes accessible. But:

- (1.) Discretisation / Volume effects: Continuum extrapolation not always clear.
 - \circ Cost bound on finest [a] due to lower bound V constraints.
 - (L=3 fm and $m_{\pi}L \sim$ 4 hard to fulfil)
 - Cost bound on largest V. $(m_{\pi}L \ge 6 \text{ hard to reach})$
- (2.) Stability issues: $m_{\pi} \to m_{\pi}^{\text{phys}}$ increases numerical problems associated with generation as fluctuations go with $\mathcal{O}(1/m_{\pi}, a)$.
 - Algorithmic bound on m_{π} at given [a]. (Coarse [a] = hard to go light)
 - Smearing? Not a silver bullet.
- (3.) Critical slowing down: As $[a] \downarrow$ the topology tunneling probability drops.
 - Topology bound on [a]. (Topology freezes \rightarrow autocorrelation explodes)
 - $\,\circ\,$ Frozen topology induces $\propto\,Q/V$ contamination of observables.

→ some dependence on action for these statements.

Open lattice initiative - Est. 2019

Motivation:

• Quantity and quality of ensembles drives precision.

OpenLat: Generate and share configurations with community.

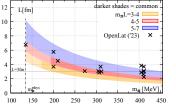
- \Rightarrow Choose new, complementary, actions and algorithms.
- \Rightarrow Aim to benefit from (and be ready for) new developments.
- \Rightarrow First focus on providing auxiliaries (rwf, m_{π} , f_{π} , Z_A , ...) for broad use.

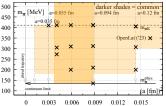
OpenLat's setup: Stabilized Wilson fermions (SWF)

- $\bullet\,$ Algorithmic improvements: SMD = stochastic molecular dynamics
 - $\circ~\mbox{SMD}$ decreases fluctuations and makes for a generally more stable run
 - $\circ~$ Supremum-norm to ensure best, volume independent, solve quality
- Fermion discretisation: Wilson exponentiated Clover

$$D = \frac{1}{2} \left[\gamma_{\mu} \left(\nabla_{\mu}^{*} + \nabla_{\mu} - a \nabla_{\mu}^{*} \nabla_{\mu} \right) \right] + m_{0} \exp \left[\frac{c_{SW}}{m_{0}} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \right]$$

AF, Fritzsch, Lüscher, Rago; Comput.Phys.Commun. 255 (2020) 107355, [2106.09080]


SWF toolkit implemented from openQCD-2.0 onwards


Open lattice initiative - Est. 2019

Lattice '21 and '22: [2212.11048], [2212.10138], [2212.07314], [2201.03874]

Cover a broad region in common area and expand:

 \rightsquigarrow Coarse a=0.12 fm line outside of common WCF area. $\rightsquigarrow {\rm New \ results \ at} \ a=0.94 \ {\rm fm \ at \ physical \ point.}$

 \rightsquigarrow First determination of f_{π} at $SU(3)_F$.

→ No direct benefit expected.

SWF in action:

(1.) Discretisation / Volume effects:

o Stabilized Wilson Fermions exhibit flatter continuum extrapolations

 \rightsquigarrow J. Green and A. Nicholson for BaSc, and G. Pederia for OpenLat, all Lattice'22

(2.) Stability issues:

 \circ Observed smoother behavior, coarser [a] and lighter m_{π} accessible

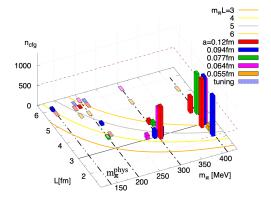
(3.) Critical slowing down:

 \circ SWF are large volume safe. \rightsquigarrow no limitation on master-field type sims, not our focus.

Criteria that have to be fulfilled by a chain of configurations:

- $\phi_4 = 8t_0(m_K^2 + m_\pi^2/2) = 1.115$ within 0.5%, with an error of max. 1σ .
- Total reweighting factor fluctuations are mild, and ideally below 5%.
- \circ SMD step distance $\delta \tau$ maximises the backtracking period.
- Distribution of δH matches the one set by the acceptance rate.
- Distribution of the lowest $\sqrt{D^{\dagger}D}$ eigenvalue is well-behaved & gapped.
- Distribution of the bounds of the strange quark spectral gap are within the input ranges, and the degree of the Zolotarev is sufficiently high, $12(V/2)\delta^2 < 10^{-4}$.
- There is no significant loss of precision caused by unbalanced contributions to the total action that might drive instabilities in the evolution.
- o Distribution of the topological charge is symmetric around zero with no metastability.

Current resources and repository


- Running allocation of 260 Mch computing time*
- 22k configurations generated, 40k by end of 2023
- Total of 500 TB data projected by end of 2023

*combined on several machines.

Configuration access

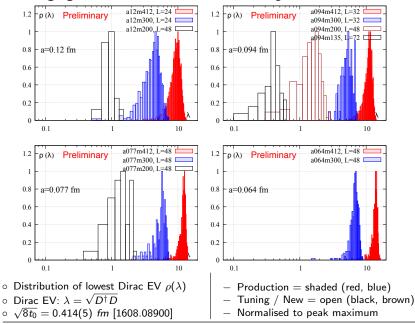
- No embargo time after publication.
- User access for unpublished configurations (case-by-case)
- Working on public hosting (JLDG? ILDG? NERSC?)

Gauge generation status

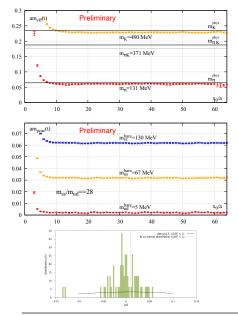
Production plan overview:

Stage 1.: $SU(3)_F$ ($M_\pi = M_K = 412$ MeV). \rightarrow Complete. Publication soon. Stage 2.: $M_\pi = 300$ MeV and 200MeV. Stage 3.: $M_\pi = 135$ MeV.

Main updates:


Ensemble	N _{conf}
a12m412	1200
a12m300	ightarrow 700
a12m200*	ightarrow 20*
a094m412	1500
a094m300**	ightarrow 250**
a094m200	50
a094m135	\rightarrow 40
a077m412	ightarrow 1000
a077m300	ightarrow 100
a077m200	ightarrow 50
a064m412	ightarrow 1100
a064m300	ightarrow 700
a055m412	ightarrow 100

*not yet finalised in tuning.


**a094m300: m_{π} = 293 ightarrow 307 MeV

for better match on [a]-line.

Gauge generation status - Lowest Dirac eigenvalue distributions

New push towards $m_{\pi} = 135$ MeV:

- Deployed gathered experience from previous runs
- New thermalisation chain
- \circ New volume: $L = 72, m_{\pi}L \simeq 4.6$
- $\circ
 ho(\lambda)$ gapped (previous slide)
- Reached:
 - $ightarrow m_{ss}/m_{ud}\simeq 28$ ightarrow m_{\pi}\simeq 131~{
 m MeV}

More work ongoing

- · MC chain very short
- More auxiliary measurements
- Sign of RWF particularly important

If all tests pass:

 \rightarrow Budgeted to gather 100 cfgs

Updates II: Renormalised f_{π} on $SU(3)_F$ line

Aside of introducing the SWF, in [2106.09080] we also demonstrated a different way to determine the **renormalized decay constant** f_{π} in

$$C_{PP} = \frac{GG_t}{m_{\pi}} e^{-m_{\pi} x_0} + \dots$$
 and $C_{AP} = \frac{f_{\pi} G_t}{m_{\pi}} e^{-m_{\pi} x_0} + \dots$

Idea: Determine the renormalization factors by probing chiral symmetry at positive flow time.

 \rightsquigarrow Builds heavily on [1302.5246] and extended by Martin Lüscher.

Observations:

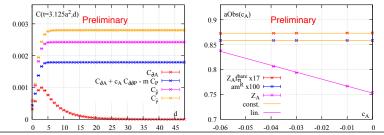
- Renormalized decay constants are insensitive to improvement coefficient c_A
- Statistical errors for f_{π} small. (Z_{ren} sims = bare parameter sims)
- Decay constants seen to depend only mildly on [a]

Insensitivity to c_A:

- The PCAC relation forms the basis to compute f_{π} .
- At positive flow time t one needs to consider correlators, e.g. $\mathcal{O} = P$ in ud-case:

$$\mathcal{C}_{P}(t,d) = \sum_{x_0=y_0-d}^{y_0+d} \sum_{\vec{x}} \langle P(x)P_t(y) \rangle$$

where the dependence on d becomes negligible once excited states are suppressed.

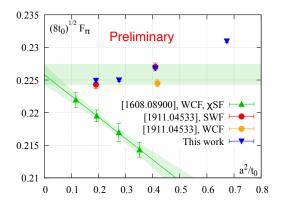

Updates II: Renormalised f_{π} on $SU(3)_F$ line

Insensitivity to c_A cont'd: PCAC relation in terms of flowed correlators is:

$$Z_{A}[\mathcal{C}_{\partial A} + c_{A}\mathcal{C}_{\partial \partial P} - m\mathcal{C}_{P}] - 2c_{ff}\mathcal{C}_{\hat{P}} = -(1 - Z_{A}\tilde{c}_{P}m)\mathcal{C}_{\tilde{P}}$$

- $\circ \ \ \mbox{Comparing two flow times:} \ \ \frac{Z_A}{1-Z_A\tilde{c}_Pm} \ \ \mbox{and} \ \ \frac{c_{\rm fl}}{1-Z_A\tilde{c}_Pm} \ \ \mbox{where} \ \ 1-Z_A\tilde{c}_Pm \sim 1.$
- Key insight: The correlators are evaluated at large *d*. In particular in the limit $d \to \infty$ they are constant and $C_{\partial A}$ and $C_{\partial \partial P}$ are zero. \Rightarrow **Explicit** c_A vanishes.
- There are still implicit dependences but in $f_{\pi} = Z_A f_{\pi}^{bare}$ these are $a^3 c_A m_{\pi}^2 G$ =small and in $m^R = Z_A m^{bare}$ they are removed.
 - $\Rightarrow f_{\pi}$ and m^R do not need a determination of c_A , but Z_A does.

Examples on a094m412 (new statistics):



afrancis@nycu.edu.tw

Updates II: Renormalised f_{π} on $SU(3)_F$ line

Updates for all $SU(3)_F$ ensembles:

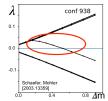
- $\circ~$ New addition of points at a=0.12 and 0.077 fm.
- $\circ~$ New statistics for a= 0.094 and 0.064 fm, $\mathit{N}\sim\mathcal{O}(10\,\mathit{N_{old}}).$
- $\circ\,$ Continuum limit: We follow a recipe where the flow times are fixed in physical units for all lattice spacings ($t_f\sim0.38,0.47$ and 0.56 fm).

- Compared to results from $\chi {\rm SF}$ by Bruno et al. (green)
- $-\chi$ SF continuum result (vertical green band)
- Previous SWF results (red), and WCF comparison (orange)
- New results (blue)

Coming soon:

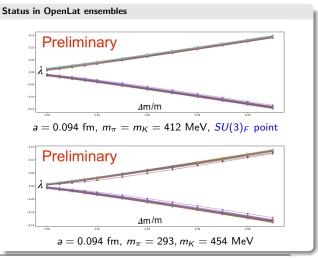
- Continuum limit of f_{π} and m^R
- *Z_A* (needs *c_A*, either from SF or LANL method)

Updates III: RWF signs



Chiral symmetry breaking in Wilson fermions: Negative $\lambda(\hat{D})$ of the Dirac operator.

- \Rightarrow RHMC: Assume the mass is large enough to avoid them.
- \Rightarrow But: negative RWF sign observed in WCF configurations [2003.13359].

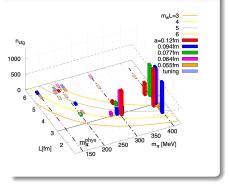

Diagnostic test:

- Direct evaluation via $\lambda(\hat{D})$ not practical.
- Hermitian: $\hat{Q} = \gamma_5 \hat{D}$

Recipe:

- \Rightarrow pairs $\pm\lambda(\hat{Q})$ for m=large
- \Rightarrow mismatch implies $-\lambda(\hat{D})$
- $\Rightarrow \text{ track } \lambda(\hat{Q}) \text{ with } m_{valence}, \\ \text{ then 0-crossing implies} \\ \text{ negative real } \lambda(\hat{D}(m))$

Summary - SWF in Action


SWF and OpenLat

- Benefits of SWF continue in production.
 - \rightarrow Coarse and light parameter extension
 - \rightarrow Stable generation after tuning
 - \rightarrow Discretisation effects seem reduced
- Further research on the action ongoing.
 - \rightarrow RWF signs
 - \rightarrow Optimised run parameters
 - \rightarrow Valence software (Chroma, openQCD)
- OpenLat as initiative to generate and provide ensembles for the community.
 - \rightarrow Working on hosting and integration
 - ightarrow Publication of stage 1 very soon

Observables update

- $\circ~$ First results at physical pion mass in $m_\pi L=$ 4.6 volume. \rightarrow Stable so far.
- $\circ~$ Determination of f_{π} via gradient flow. \rightarrow Advocate broader use of this method.
- $\circ~$ Preliminary look at RWF signs. \rightarrow No negative signs seen so far.

Thank you for your attention.

