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Topological freezing

In Lattice QCD sectors characterized by different values of the topological charge Q emerge in the continuum limit

For a → 0 the transition between these sectors becomes more and more strongly suppressed

→ very long autocorrelation times characterize topological observables when standard MCMC algorithms are used

Use of open boundary conditions [Lüscher and Schaefer; 2011] in time mitigates the problem by removing the sectors

Drawback: strong finite-size effects have to be taken into account

Methods such as parallel tempering [Hasenbusch; 2017] approach the problem in a similar manner
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Jarzynski’s equality in MCMC

Consider two distributions q0 and p

q0 = exp(−S0)/Z0 → · · · → p = exp(−S)/Z

Ratio of the two partition functions computed directly with an average over non-equilibrium processes [Jarzynski; 1997]

Z

Z0
= ⟨exp (−W )⟩f

”Guided” MCMC evolution:
▶ over nstep intermediate steps

▶ the system evolves using regular MC updates with a transition probability Pc(n)(ϕn → ϕn+1) that changes along the
evolution according to a protocol c(n)

▶ c(n) interpolates between q0 and p

q0 ≃ e−Sc(0) → e−Sc(1) → · · · → p ≃ e
−Sc(nstep)

Along the process we compute the work

W =

N−1∑
n=0

{
Sc(n+1) [ϕn]− Sc(n) [ϕn]

}
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Out-of-equilibrium stochastic evolutions

The average on the processes can be written rigorously

Z

Z0
= ⟨exp (−W )⟩f =

∫
dϕ0 dϕ1 . . . dϕ q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕ] exp(−W )

with Pf[ϕ0, ϕ1, . . . , ϕ] =
∏N−1

n=0 Pc(n)(ϕn → ϕn+1)

▶ the actual probability distribution at each step is NOT the equilibrium distribution ∼ exp(−Sc(n)): it’s a
non-equilibrium process!

▶ several applications already! interface free-energy[Caselle et al.; 2016], SU(3) equation of state in 4d[Caselle et al.; 2018],
running coupling [Francesconi et al.; 2020], entanglement entropy [Bulgarelli and Panero; 2023]

talk by Andrea Bulgarelli → QCQI session Fri 9:20

▶ much more general idea! compute v.e.v. for p with

⟨O⟩ =
⟨O(ϕ) exp(−W (ϕ0 → ϕ))⟩f

⟨exp(−W (ϕ0 → ϕ))⟩f

▶ this work: rigorously sample PBC by starting from OBC!
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A new paradigm to perform MCMC
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A common framework with Normalizing Flows

We measure the ”quality” of the out-of-equilibrium evolutions with

D̃KL(q0Pf∥pPr) =

∫ N∏
i=0

dϕi q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕN ] log
q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕN ]

p(ϕN)Pr[ϕN , ϕN−1, . . . , ϕ0]

→ measure of how reversible the process is!

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
≥ 0︸ ︷︷ ︸

Second Law of thermodynamics!

Metric

Effective Sample Size as metric to evaluate architectures

ESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f

ESS = 1 → equilibrium
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The CPN−1 model with a defect

Improved action

S
(r)
L = −2NβL

∑
x,µ

{
k
(n)
µ (x)c1ℜ

[
Ūµ(x)z̄(x + µ̂)z(x)

]
+ k

(n)
µ (x + µ̂)k

(n)
µ (x)c2ℜ

[
Ūµ(x + µ̂)Ūµ(x)z̄(x + 2µ̂)z(x)

]}
with z(x) a vector of N complex numbers with z̄(x)z(x) = 1 and Uµ(x) ∈ U(1)

c1 = 4/3 and c2 = −1/12 are Symanzik-improvement coefficients

The k
(n)
µ (x) regulate the boundary conditions along a given defect D

k
(n)
µ (x) ≡

{
c(n) x ∈ D ∧ µ = 0 ;

1 otherwise.

at a given step n of the out-of-equilibrium evolution protocol c(n)
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”Slower” evolutions allow for better (but more expensive) sampling

0 250 500 750 1000 1250 1500 1750 2000
nstep

0.0

0.2

0.4

0.6

0.8

1.0

E
S

S

N=21, d=6

N=21, d=24

N=21, d=60

N=21, d=114

Results for N = 21, β = 0.7, V = 1142
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Topological observables and benchmarks

Geometric definition of the topological charge Q

Q =
1

2π

∑
x

Im log Π12(x)

with Πµν(x) ≡ Uµ(x)Uν(x + µ̂)Ūµ(x + ν̂Ūν(x)

We look at topological susceptibility

χ =
1

V
⟨Q2⟩

Efficiency-wise Parallel Tempering is our benchmark (mainly results from [Bonanno et al.; 2019])

▶ proposed for 2d CPN−1 [Hasenbusch; 2017], recently implemented for 4d SU(N) pure-gauge [Bonanno et al.; 2021, 2022]

▶ consider a collection of Nr lattice replicas that differ for the value of c(r), each updated with standard methods

▶ after updates, propose swaps among configurations via Metropolis test

▶ decorrelation of topological charge improved thanks to OBC replica

▶ observable computed on PBC replica

Alessandro Nada (UniTo) Out-of-equilibrium simulations to fight topological freezing 31/7/2023 9



Topological susceptibility for various protocols for N = 21, βL = 0.7, V = 1142 (roughly similar numerical effort)

Note that with OBC → τint(χ) ∼ 50 (preliminary)
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Black band is from parallel tempering [Bonanno et al.; 2019] → with × ∼ 100 numerical cost
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Topological susceptibility for various protocols for N = 41, β = 0.65, V = 1322 (roughly similar numerical effort)

Note that with OBC → τint(χ) ∼ 170 (preliminary)
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Black band is from parallel tempering [Bonanno et al.; 2019] → with × ∼ 40 numerical cost
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Efficiency of various methods as error ×
√
effort for N = 21, βL = 0.7 (preliminary)
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Natural extension: SNFs

Stochastic Normalizing Flows alternate MC updates with coupling layers [Wu et al.; 2020],[Caselle et al.; 2022]

ϕ0 → g1(ϕ0)
Pc(1)→ ϕ1 → g2(ϕ1)

Pc(2)→ . . .
Pc(nstep)→ ϕ

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

essentially share the same loss D̃KL and same simulation structure
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Encouraging results from SNFs in a toy model

Excellent results in ϕ4 theory in 2d
[Caselle et al.; 2022]

With a proper NN+MC architecture
same efficiency as non-equilibrium
evolutions with ∼ 1/10 of MC
updates

0 100 200 300 400 500
nsb

0.0

0.2

0.4

0.6

0.8

1.0

E
S

S

nab = 0

nab = 6, CNN

nab = 12, CNN

nab = 24, CNN

nab = 48, CNN

Idea: systematically improve out-of-equilibrium evolutions using SNFs

see poster by Joe Marsh Rossney on equivariant NFs for CPN−1!
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Thank you for your attention!

Alessandro Nada (UniTo) Out-of-equilibrium simulations to fight topological freezing 31/7/2023 16



The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually

⟨W ⟩f ≥ ∆F = FB − FA

for a given ”forward” process f from A to B
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Jarzynski’s equality and the Second Law

Jarzynski’s equality [Jarzynski; 1997] is a beautiful result from non-equilibrium statistical mechanics

〈
exp

(
−
W

T

)〉
f

= exp

(
−
∆F

T

)
valid for a given process f

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩

exp

(
−

∆F

T

)
=

〈
exp

(
−

W

T

)〉
f

≥ exp

(
−

⟨W ⟩f
T

)
and we get the Second Law of thermodynamics

⟨W ⟩f ≥ ∆F

Apart from the real world, it can be proved for several processes

→ most relevantly for us: Markov Chain Monte Carlo for lattice field theory
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Numerical experiments with various defect sizes (up to full OBC)

N = 21, βL = 0.7, V = 1142
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Normalizing flows: structure and training

NFs are a deterministic mapping
gθ(ϕ0) = (gN ◦ · · · ◦ g1)(ϕ0) ϕ0 ∼ q0

composed of N invertible transformations → the coupling layers gn

The generated distribution for ϕN is

qN(ϕN) = q0(g
−1
θ (ϕN))

∏
n

|det Jn(ϕn)|−1

gn chosen to be invertible and with an easy-to-compute Jacobian

Training procedure minimizes the Kullback-Leibler divergence: measure of the “similarity” between two distributions

D̃KL(qN∥p) =
∫

dϕ qN(ϕ) log
qN(ϕ)

p(ϕ)
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Sampling with Normalizing flows

Sampling (not the only possibility: see independent MH)

⟨O⟩ =
1

Z

∫
dϕO(ϕ)qN(ϕ)

p(ϕ)

qN(ϕ)
=

Z0

Z

∫
dϕ qN(ϕ)︸ ︷︷ ︸

sample

O(ϕ)w̃(ϕ)︸ ︷︷ ︸
measure

=
⟨O(ϕ)w̃(ϕ)⟩ϕ∼qN

⟨w̃(ϕ)⟩ϕ∼qN

with a weight

w̃(ϕ) = exp
(
−

{
S[ϕ]− S0[g

−1
θ (ϕ)]− log J

})

Get Z directly by sampling from qN [Nicoli et al.; 2020]

Z =

∫
dϕ exp(−S[ϕ]) = Z0

∫
dϕ qN(ϕ)w̃(ϕ) = Z0⟨w̃(ϕ)⟩ϕ∼qN

Train minimizing

D̃KL(qN∥p) = −⟨log w̃(ϕ)⟩ϕ∼qN + log
Z

Z0
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A common framework: Stochastic Normalizing Flows

Jarzynski’s equality is the same formula used to extract Z in NFs

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼qN = ⟨exp(−W )⟩f

The exponent of the weight is always of the form (note that for NFs ⟨. . . ⟩ϕ∼qN
= ⟨. . . ⟩f)

W (ϕ0, . . . , ϕN) = S(ϕN)− S0(ϕ0)− Q(ϕ1, . . . , ϕN)

Normalizing Flows

ϕ0 → ϕ1 = g1(ϕ0) → · · · → ϕN

”Q” = log J =

N−1∑
n=0

log |det Jn(ϕn)|

stochastic non-equilibrium evolutions

ϕ0

Pη1→ ϕ1

Pη2→ . . .
PηN→ ϕN

Q =

N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (ϕn)

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

ϕ0 → g1(ϕ0)
Pη1→ ϕ1 → g2(ϕ1)

Pη2→ . . .
PηN→ ϕN

Q =

N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (gn(ϕn)) + log |det Jn(ϕn)|
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SNFs for ϕ4 at various volumes

Training length: 104 epochs for all volumes. Slowly-improving regime reached fast
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Interesting behaviour for all volumes: a peak for nsb = nab?Alessandro Nada (UniTo) Out-of-equilibrium simulations to fight topological freezing 31/7/2023 23



SNFs for ϕ4 at various volumes

SNFs with nsb = nab as a possible recipe for efficient scaling
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Taking cues from the SU(3) e.o.s.

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Goal: extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log⟨e−WSU(Nc ) ⟩f

evolution in βg (inverse coupling) → changes lattice spacing a → changes temperature T = 1/(aNt)

Prior: thermalized Markov chain at a certain β
(0)
g

For systems with many d.o.f. (i.e. large volumes), JE works when N is large, i.e. evolution is slow (and expensive)
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SU(3) e.o.s. with Jarzynski’s equality
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Large volumes (up to 1603 × 10) and very fine lattice spacings β ≃ 7
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