
Sparse modeling approach to extract spectral functions 
with covariance of Euclidean-time correlators of lattice QCD

Lattice 2023
Fermilab, Illinois, USA, August 1st, 2023

Junichi Takahashi
Meteorological College, Japan Meteorological Agency

Hiroshi Ohno (University of Tsukuba), Akio Tomiya (IPUT Osaka)



Table of contents

p.2/18

• Background & Motivation
• Sparse modeling

• Mock data tests
• Results from lattice data
• Summary & Outlook



• Spectral functions are needed to study the properties of the hot and dense 

medium in relativistic heavy-ion collisions.
ü differential cross section for thermal dilepton production

Probes of Quark-Gluon Plasma
ü heavy quark diffusion coefficient

Transport properties

ü …

Background & Motivation
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Spectral function extracted from lattice QCD data

• Observables in LQCD: 

Euclidean (imaginary time) meson correlation function 

: local meson operator

Spectral function
Discretized 
& schematically

Extracting spectral functions is an ill-posed inverse problem.
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Spectral function extracted from lattice QCD data

• Previous works (not inclusive)
ü Maximum entropy method

[M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46 (2001) 459-508]

ü Stochastic method
[H.-T. Ding, et al., Phys. Rev. D 97, 094503 (2018)]

ü Backus Gilbert method
[B. B. Brandt, A. Francis, H. B. Meyer, and D. Robaina, Phys. Rev. D 92, 094510 (2015)]

ü Sparse modeling
[E. Itou, Y. Nagai, J. High Energ. Phys. 2020, 7 (2020)]

Various methods have been developed and used to calculate spectral functions, 
and it is important to check the spectral function with each other in various ways 
and to properly estimate the systematic error.
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Sparse modeling

• Extracting spectral functions by using sparse modeling has been proposed in 

condensed matter physics.

Ø The rank of the spectral function is reduced by dropping the contribution of small singular 

values.

Ø L1 regularization term is added to cost function. (LASSO form problem)

Ø This optimization problem is solved by alternating direction method of multipliers(ADMM).  

Singular value decomposition of kernel

- Fitting with different regularization in MEM (we do not use default models)

[H. Shinaoka, J. Otsuki, M. Ohzeki, K. Yoshimi, Phys. Rev. B 96 (2017) 035147]
[J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi, Phys. Rev. E 95 (2017) 061302]

[S. Boyd, et al., Foundations and Trends R in Machine Learning 3, 1 (2011)]

L1 norm: 
λ is a positive hyperparameter.
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Update from previous work

• Update from E. Itou’s work:
ü Covariance matrix is taken account.

ü Apply to mock data for checking the applicability of the method.

Covariance matrix

G between different Euclidean times are correlated.

The covariance matrix is needed to be considered.
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Sparse modeling in our study

1. Carry out the singular value decomposition of the kernel matrix K(ω,τ):

2. Transform the basis of ρ by Vt:
3. The components of     corresponding to small singular values satisfied with 

are dropped.

• At the same time, the sizes of U, S and V are reduced.

S is an M×N diagonal matrix. U and V are M×M and N×N orthogonal matrices, 

respectively. M and N are the # of points of G(τ) and ρ(ω), respectively.

S : M×N → L×L
U : M×M → M×L
V : N×N → N×L

L is the number of components of singular values satisfied with .
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ü Minimize the cost function F(ρ’) 
subject to the positivity constraint 
of .

Sparse modeling in our study

4. The cost function F(ρ’) consists of the square error with covariance matrix and 

the L1 regularization term.

5. Estimate the optimal value of λ, λopt same as the previous study.

6. Find the most likely spectral function ρ by using ADMM algorithm.

Covariance matrix In previous work, C is not considered.

[E. Itou, Y. Nagai, J. High Energ. Phys. 2020, 7 (2020)]
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: a line in log-log scale

The components of the vector ρ An optimal value λopt: 
The value of λ at the position
of the kink in      .



Sparse modeling in our study

4. The cost function F(ρ’) consists of the square error with covariance matrix and 

the L1 regularization term.

5. Estimate the optimal value of λ, λopt same as the previous study.

6. Find the most likely spectral function ρ by using ADMM algorithm.

Covariance matrix In previous work, C is not considered.

[E. Itou, Y. Nagai, J. High Energ. Phys. 2020, 7 (2020)]

p.9/18
10- 15 10- 10 10- 5 100

100
101
102
103
104
105
106

An optimal value λopt: 
The peak in the ratio 
corresponds to the position of 
the kink in     .

ü Minimize the cost function F(ρ’) 
subject to the positivity constraint 
of .

The components of the vector ρ



Mock data test

• Mock data: vector channel of e+e- annihilation [T. Yamazaki, et al.(CP-PACS Collaboration), 
Phys.Rev.D65:014501,2002]

Spectral function

defines the residue of    meson resonance     .

represents the threshold of                 decay.

The values of parameters:

peak continuum
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Mock data test

• The central values of correlation function G(τ)

• Errors of G(τ) are generated by gaussian random numbers with the variance 

• In this test, no correlation between different τ is considered.
The covariance matrix C is set to diagonal.

• The range of ω: , # of ω points: Nω=601
• We performed tests on three types of Nτ:
• Reconstruction error: 

Δτ can be set from .
We set Δτ=0.5.
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Results of mock data test

Nτ=16 Nτ=31 Nτ=46

r = 0.01892r = 0.02611r = 0.03968

• Reconstruction error becomes smaller as Nτ becomes longer.

• Positivity condition is not satisfied in the low-ω region.
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Results of mock data test

• Positivity condition is almost satisfied.

Ø The oscillations of are weak when there is no peak in      .

• Mock data (Nτ=46)
Continuum and dumpedOnly continuum
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Lattice QCD data

• Standard plaquette gauge + O(a)-improved Wilson quark action

• In the quenched approximation
• Lattice spacing: 
• Spatial and temporal extents:
• Vector channel
• # of conf.: 234

[H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz, W. Soeldner, 
Phys. Rev. D 86, 014509 (2012)]
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Normalization

• Kernel

• Correlation function has lattice cutoff effects at small distances.

Diverges at ω = 0.
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We used the correlation function data from τ0/a to Nτ/2 in our analysis.
We chose τ0/a = 4 to reduce the cutoff effects.



Results from lattice QCD data

• The value of the spectral function increases around 2 GeV.

• Broad peak around 4 GeV.
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ØA bit larger compared to the results of MEM（3.48 GeV）and the J/ψ mass on 
this lattice（3.472 GeV）.

[H.-T. Ding, A. Francis, O. Kaczmarek,
F. Karsch, H. Satz, W. Soeldner, 
Phys. Rev. D 86, 014509 (2012)]

Our result



• We applied sparse modeling(SpM) for extracting spectral functions from 

Euclidean-time correlation functions.
• We took account of covariance between different Euclidean times of the 

correlation function for SpM.
• We tested SpM with mock data and checked applicability of SpM.
• We tried to extract spectral functions from vector charmonium correlation 

functions obtained from lattice QCD.

Summary
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• We should check the following points systematically.

ü Positivity of spectral functions
ü Optimal value of λ
ü Convergence of ADMM iterations
ü …

• Whether transport peaks appear at higher temperature.

Outlook
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Searching λopt

1. Fix a range of λ, [λmin, λmax]

2. Calculate χ2(ρ’) for each λ by using ADMM 
iterations
ü # of iterations: 10000

3. Obtain a function f(λ) in log-log scale by 
connecting f(λmin) with f(λmax)

4. Calculate the ratio f(λ)/χ2

The λ located at the peak position of 
f(λ)/χ2 corresponds to λopt.
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