Charmonium-like channels 1⁺⁻ and 1⁺⁺ with isospin 1

MITJA SADL (UNIVERSITY OF LJUBLJANA)

SARA COLLINS (UNIVERSITY OF REGENSBURG)

M. PADMANATH (IMSC, CHENNAI)

SASA PRELOVSEK (UNIVERSITY OF LJUBLJANA, JOZEF STEFAN INSTITUTE)

THE 40TH INTERNATIONAL SYMPOSIUM ON LATTICE FIELD THEORY (LATTICE 2023)

Fermilab

FERMILAB, AUGUST 1, 2023

Motivation

Our focus:

- Charmonium-like resonances
- I(J^{PC}):
 - 1(1⁺⁻) (observed Z_c states):
 - Manifestly exotic
 - First discoveries of Z_c(3900):
 - M. Ablikim et al. (BESIII), PRL **110**, 252001 (2013)
 - Z. Q. Liu et al. (Belle), PRL 110, 252002 (2013)
 - Lying on the DD^{*} threshold

Motivation

Our focus:

- Charmonium-like resonances
- I(J^{PC}):
 - 1(1⁺⁻)
 - 1(1⁺⁺):
 - No experimentally established state
 - A candidate is an isospin partner of $\chi_{c1}(3872)$ expected in the diquarkantidiquark models
 - Possible candidates (observed but not established; 1(?^{?+}):
 - X(4050)
 - X(4250)

Lattice studies so far

$I(J^{PC}) = 1(1^{+-}) - Z_{c}$ states:

- Lattice studies find almost non-interacting $D\overline{D}^*$ and $J/\psi\pi$ eigen-energies:
- S. Prelovsek and L. Leskovec, Phys. Lett. B 727, 172 (2013)
- S. Prelovsek et al., PRD 91, 014504 (2015)
- Y. Chen et al. (CLQCD), PRD 89, 094506 (2014)
- S.-h. Lee et al. (Fermilab Lattice, MILC), (2014), arXiv:1411.1389
- G. K. C. Cheung et al. (HSC), JHEP 11, 033 (2017)
- T. Chen et al. (CLQCD), Chin. Phys. C43, 103103 (2019)
- HAL QCD lattice study aimed at Z_c(3900) claiming that Z_c(3900)⁺ is a threshold cusp suggesting the importance of cross-channel interaction:
 - Y. Ikeda et al., PRL 117, 242001 (2016)
 - Y. Ikeda, J. Phys G45, 024002 (2018)

 $I(J^{PC}) = 1(1^{++}):$

Studies find almost noninteracting DD ^{*} eigenenergies:

- S. Prelovsek and L. Leskovec, PRL 111 192001 (2013)
- M. Padmanath, C. B. Lang and S. Prelovsek, PRD 92, 034501 (2015)

The latest study on Z_c(3900)

L.-W. Yan, Z.-H. Guo, F.-K. Guo, D.-L. Yao, Z.-Y. Zhou, (2023), arXiv:2307.12283

- The J/ $\psi\pi$ and D \overline{D}^* **coupled-channel** system within a covariant framework
- The J/ψπ and DD̄* invariant-mass distributions (BESIII) and lattice QCD¹ energy levels are successfully simultaneously fitted
- Interaction between $J/\psi\pi$ and $D\overline{D}^*$ important for the explanation of the $Z_c(3900)$ peaks
- Used lattice data do not preclude the existence of $Z_c(3900)$

¹Fitted lattice data from:
G. K. C. Cheung *et al.* (HSC), JHEP **11**, 033 (2017)
T. Chen *et al.* (CLQCD), Chin. Phys. **C43**, 103103 (2019)

Overview of our study

• Meson-meson interpolators:

• Charmonium + light meson

- D + D̄* / D̄ + D*
- No diquark-antidiquark interpolators
 - very little influence found when including them:

M. Padmanath, C. B. Langand S. Prelovsek, PRD 92, 034501 (2015)
S. Prelovsek *et al.*, PRD 91, 014504 (2015)

- 2 different charge parities (C = +, -)
- 2 ensembles (N_L = 24, 32)
- 2 lattice irreps:
 - P = (0,0,0): $\Lambda^{P} = T_{1}^{+}$
 - P = (0,0,1): A = A₂

Note that continuum quantum numbers J^P = 1⁺ contribute to those irreps

This is the first lattice study that incorporates 2 different lattice sizes and additionally to P = (0,0,0) also P = (0,0,1)

CLS lattice ensembles

	dynamical quarks	ensembles	U101	H105
N _F	2 + 1	$N_{L}^{3} \times N_{T}$	24 ³ × 128	32 ³ × 96
а	0.08636(98)(40) fm			
m _π	280(3) MeV	configurations	255	492
m _c	slightly heavier than physical	Laplacian eigenvectors (quark fields are smeared with the 'Distillation' method)	90	100
M_{av}	3103(3) MeV			
m _D	1927(1) MeV			
m _{D*}	2049(2) MeV			

Elastic $D\overline{D}^*$ scattering (C = -, Z_c)

Phase shift plots are obtained assuming negligible coupling to $J/\psi\pi$ and $\eta_c\rho$

 $1/a_0 = 0.54 \begin{pmatrix} +1.07 \\ -0.44 \end{pmatrix} \text{ fm}^{-1}$ $p \cot (\delta_0(p)) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \dots$ $r_0 = 2.23 \begin{pmatrix} +0.95 \\ -1.08 \end{pmatrix}$ fm $D\bar{D}^*$ scattering ($\eta_c \rho$ excl.): C = - $1/a_0 = 0.24 \begin{pmatrix} +1.21 \\ -0.30 \end{pmatrix} \text{ fm}^{-1}$ 0.8 • $T_1^{+-} - N_L = 24 - D(0)\bar{D}^*(0)$ • $T_1^{+-} - N_L = 32 - D(0)\bar{D}^*(0)$ • $T_1^{+-} - N_L = 32 - D(1)\bar{D}^*(1)$ s-wave • $A_2^- - N_L = 24 - D(0)\bar{D}^*(1)$ $r_0 = 1.08 \begin{pmatrix} +0.32 \\ -0.93 \end{pmatrix}$ fm 0.6 $pa \cot(\delta_0)$ $D\bar{D}^*$ scattering: C = -0.4 $pa \cot \left(\delta_0 \right)$ 0.2 0.0 0.0 0.010.000.020.030.00 0.010.020.03-0.01-0.01 $(pa)^2$ $(pa)^2$ MITJA SADL, CHARMONIUM-LIKE CHANNELS 1⁺⁻ AND 1⁺⁺ WITH ISOSPIN 1

Elastic $D\overline{D}^*$ scattering amplitude (C = -, Z_c)

Reconciling experiment and lattice results of $Z_c(3900)$

Elastic $D\overline{D}^*$ scattering (C = +, isospin partner of $\chi_{c1}(3872)$)

One-channel J/ $\psi\pi$ scattering in the I(J^{PC}) = 1(1⁺⁻) channel

Conclusions

- Investigation of the exotic charmonium-like spectrum 1(1^{+±})
 - Scattering amplitude assuming **decoupled** $D\overline{D}^*$ scattering close to the threshold
- Thresholds J/ $\psi\pi$, $\eta_c\rho$ (J/ $\psi\rho$) in the 1⁺⁻ (1⁺⁺) channel lie below the D \overline{D}^* threshold
 - Large uncertainties of higher-lying $D\overline{D}^*$ eigen-energies
 - Large uncertainties of the scattering amplitude
- Previous and current lattice studies find relatively non-interacting eigen-energies
 - but according to a recent paper $\frac{1}{4}$ arXiv:2307.12283 , lattice data which were jointly fitted with the experiment in a J/ $\psi\pi$, D \overline{D}^* coupled-channel framework do not preclude the existence of Z_c(3900)
- > Our data show slightly more attraction compared to previous lattice data
- > OUTLOOK: It will be interesting to see whether our spectra reconcile with the experiment

Thank you for your attention

Backup – spectra

Backup – spectra

Backup – spectra

Backup – our procedure

- Extract the finite volume spectrum (in 2 inertial frames and for 2 different lattice volumes):
 - Eigen-energies from the single-exponential fits to the eigenvalues $\lambda^{(n)}(t) \propto e^{-E_n^{ ext{lat}}t}$

of the from generalized eigenvalue problem $C(t)v^{(n)}(t) = \lambda^{(n)}(t)C(t_0)v^{(n)}(t)$

- Consider only single channel (*s*-wave) DD⁺ scattering
 - Assume elastic scattering near the threshold

•Fit effective range parameters
$$p \cot(\delta_0(p)) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \dots$$

 $2\mathcal{Z}_{00}^{\mathbf{d}}\left(1, \left(\frac{pL}{2\pi}\right)^2\right)$

to $p \cot(\delta_l(p)) = \frac{2\mathcal{L}_{00}\left(1, \left(\frac{1}{2\pi}\right)\right)}{\gamma\sqrt{\pi}L}$

determined via Lüscher relation from lattice energy levels E_{cm}

We minimize χ^2 with the residue $\Omega(E_{cm}) = \frac{\det(A)}{\det((\mu^2 + AA^{\dagger})^{1/2})}$, where $A(E_{cm}) = \tilde{K}^{-1}(E_{cm}) - B(E_{cm})$

a ccording to determinant residual method proposed by C. Morningstaret al., Nucl. Phys. B 924, 477 (2017)

Utilized interpolators

