Status of the exploratory calculation of the rare hyperon decay

Raoul Hodgson
$3^{\text {rd }}$ August 2023

University of Edinburgh
raoul.hodgson@ed.ac.uk
Lattice 2023

European Research Council
Established by the European Commission

Rare Decays

- One avenue to search for BSM physics in is via rare decay processes
- $s \rightarrow d$ quark transitions are FCNCs that are good probes for BSM physics due to being suppressed in the SM:
- $K_{L}^{0} \rightarrow \ell^{+} \ell^{-}$
[Pos Lattice2021 451] [Talks: En-Hung Chao 13:30 Thurs, Bai-Long Hoid 13:50 Thurs, Amarjit Soni 14:10 Thurs]
- $\mathrm{K}^{+/ 0} \rightarrow \pi^{+/ 0} \ell^{+} \ell^{-}$
[RH hep-lat/2202.08795]
- $\mathrm{K}^{+/ 0} \rightarrow \pi^{+/ 0} \nu \bar{\nu}$
[hep-lat/1910.10644]
- $\Sigma^{+} \rightarrow p \ell^{+} \ell^{-}$
- We shall focus on the rare Hyperon decay $\Sigma^{+} \rightarrow p \ell^{+} \ell^{-}$
- Need an experimental measurement and a SM prediction to identify any new physics

Experimental Measurement

First observed by HyperCP: [hep-ex/0501014]

- 3 events seen

$$
\mathcal{B}\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)_{\text {HCP }}=8.6_{-5.4}^{+6.6} \pm 5.5 \times 10^{-8}
$$

- HyperCP anomaly: possible new particle $\Sigma^{+} \rightarrow p P^{0}, P^{0} \rightarrow \mu^{+} \mu^{-}$with $m_{p^{0}} \simeq 214 \mathrm{MeV}$

Recently measured at LHCb: [hep-ex/1712.08606]

- 10 events. No evidence of the HyperCP anomaly

$$
\mathcal{B}\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)_{\text {Lнсь }}=2.2_{-1.3}^{+1.8} \times 10^{-8}
$$

- Currently working on improved measurements
+ angular observables
$+e^{+} e^{-}$mode

Phenomenological Calculation

- Existing SM prediction [hep-ph/0506067] [hep-ph/1806.08350] shows rare hyperon decay is long distance dominated via

$$
\Sigma^{+} \rightarrow p \gamma^{*}, \gamma^{*} \rightarrow \ell^{+} \ell^{-}
$$

- Has 4 hadronic form factors a, b, c, d (see later)
- Computed using Experimental input, ChPT and vector meson dominance
- Gives rise to large range in SM prediction

$$
1.6 \times 10^{-8}<\mathcal{B}\left(\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}\right)_{S M}<9.0 \times 10^{-8}
$$

- Poor constraint of $\operatorname{Re} a$ and $\operatorname{Re} b$ from experimental measurement of $\Sigma^{+} \rightarrow p \gamma$ mainly responsible for this large range

Exploratory Rare Hyperon Lattice

Calculation

Exploratory Calculation: RBC-UKQCD Collaboration

The RBC \& UKQCD collaborations

University of Bern \& Lund
Dan Hoying
BNL and BNL/RBRC
Peter Boyle (Edinburgh)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Nobuyuki Matsumoto
Shigemi Ohta (KEK)
Amarjit Soni
Raza Sufian
Tianle Wang
CERN
Andreas Jüttner (Southampton)
Tobias Tsang
Columbia University
Norman Christ
Sarah Fields
Ceran Hu
Yikai Huo
Joseph Karpie (JLab)
Erik Lundstrum
Bob Mawhinney
Bigeng Wang (Kentucky)
University of Connecticut
Tom Blum
Luchang Jin (RBRC)

Douglas Stewart
Joshua Swaim
Masaaki Tomii

Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Maxwell T. Hansen
Tim Harris
Ryan Hill
Raoul Hodgson
Nelson Lachini
Zi Yan Li
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
James Richings
Azusa Yamaguchi
Andrew Z.N. Yong
Liverpool Hope/Uni. of Liverpool
Nicolas Garron

LLNL
Aaron Meyer
University of Milano Bicocca
Mattia Bruno
Nara Women's University
Hiroshi Ohki

Peking University
Xu Feng
University of Regensburg
Davide Giusti
Andreas Hackl
Daniel Knüttel
Christoph Lehner
Sebastian Spiegel
RIKEN CCS
Yasumichi Aoki
University of Siegen
Matthew Black
Anastasia Boushmelev
Oliver Witzel

University of Southampton

Alessandro Barone

Bipasha Chakraborty
Ahmed Elgaziari
Jonathan Flynn
Nikolai Husung
Joe McKeon
Rajnandini Mukherjee
Callum Radley-Scott
Chris Sachrajda
Stony Brook University
Fangcheng He
Sergey Syritsyn (RBRC)

Minkowski Amplitude

- Extraction of the rare hyperon decay from the lattice is presented in
[RH hep-lat/2209.15460]
- Long distance $\Sigma^{+} \rightarrow p \gamma^{*}$ amplitude

$$
\mathcal{A}_{\mu}^{\text {rs }}=\int d^{4} x\langle p(p), r| T\left[H_{w}(x) J_{\mu}(0)\right]\left|\Sigma^{+}(k), s\right\rangle
$$

- J_{μ} is the Electromagnetic current
- H_{w} is the $s \rightarrow d$ effective weak Hamiltonian

$$
H_{w}=\frac{G_{f}}{\sqrt{2}} V_{u s} V_{u d}^{*}\left[C_{1}\left(Q_{1}^{u}-Q_{1}^{c}\right)+C_{2}\left(Q_{2}^{u}-Q_{2}^{c}\right)+\ldots\right]
$$

with 4-quark operators

$$
Q_{1}^{q}=\left(\bar{d} \gamma^{L \mu} s\right)\left(\bar{q} \gamma_{\mu}^{L} q\right) \quad Q_{2}^{q}=\left(\bar{d} \gamma^{L \mu} q\right)\left(\bar{q} \gamma_{\mu}^{L} s\right)
$$

- GIM subtraction in $Q_{i}^{u}-Q_{i}^{C}$
- Wilson coefficients $C_{i>2}$ suppressed by factor $\frac{V_{t s} V_{t d}}{V_{u s} V_{u d}} \sim 10^{-3}$

Minkowski Amplitude

- Form factor decomposition

$$
\begin{array}{r}
\mathcal{A}_{\mu}^{r s}=\bar{u}_{p}^{r}(p)\left[i \sigma_{\nu \mu} q^{\nu}\left(a+b \gamma_{5}\right)+\left(q^{2} \gamma_{\mu}-q_{\mu} \not q\right)\left(c+d \gamma_{5}\right)\right] u_{\Sigma}^{s}(k) \\
q=k-p
\end{array}
$$

- Spectral representation

$$
\mathcal{A}_{\mu}^{r s}=-i \int_{0}^{\infty} d \omega\left(\frac{\rho_{\mu}^{r s}(\omega)}{\omega-E_{\Sigma}(k)-i \epsilon}+\frac{\sigma_{\mu}^{r s}(\omega)}{\omega-E_{p}(p)-i \epsilon}\right)
$$

- In finite volume spectral functions have the form

$$
\begin{aligned}
\rho_{\mu}^{\text {rs }}(\omega)_{L} & =\sum_{\alpha} \frac{\delta\left(\omega-E_{\alpha}(k)\right)}{2 E_{\alpha}(k)}\langle p(p), r| J_{\mu}\left|E_{\alpha}(k)\right\rangle_{L}\left\langle E_{\alpha}(k)\right| H_{W}|\Sigma(k), s\rangle_{L} \\
\sigma_{\mu}^{\text {rs }}(\omega)_{L} & =\sum_{\beta} \frac{\delta\left(\omega-E_{\beta}(p)\right)}{2 E_{\beta}(p)}\langle p(p), r| H_{W}\left|E_{\beta}(p)\right\rangle_{L}\left\langle E_{\beta}(p)\right| J_{\mu}|\Sigma(k), s\rangle_{L}
\end{aligned}
$$

Euclidean Correlators

- In a finite Euclidean space-time have access to 4-point function

$$
\Gamma_{\mu}^{(4)}\left(t_{p}, t_{H}, t_{\Sigma}\right)=\int d^{3} x\left\langle\psi_{p}\left(t_{p}, p\right) H_{W}\left(t_{H}, x\right) J_{\mu}(0) \bar{\psi}_{\Sigma}\left(t_{\Sigma}, k\right)\right\rangle
$$

with unpolarised interpolators ψ_{p} and ψ_{Σ}

- Amputate external state creation, propagation and annihilation (assuming ground state dominance)

$$
\begin{aligned}
\hat{\Gamma}_{\mu}^{(4)}\left(t_{H}\right) & =\Gamma_{\mu}^{(4)}\left(t_{p}, t_{H}, t_{\Sigma}\right) / Z_{\Sigma p}\left(t_{\Sigma}, t_{p}\right) \\
& =\int_{0}^{\infty} d \omega\left\{\begin{array}{lll}
\widetilde{\rho}_{\mu}(\omega)_{L} e^{-\left(E_{\Sigma}-\omega\right) t_{H}} & \text { for } t_{H}<0 \\
\widetilde{\sigma}_{\mu}(\omega)_{L} e^{-\left(\omega-E_{p}\right) t_{H}} & \text { for } & t_{H}>0
\end{array}\right.
\end{aligned}
$$

- Dirac matrix valued spectral densities

$$
\tilde{\rho}_{\mu}(\omega)_{L} \sim \sum_{r s} u_{p}^{r} \rho_{\mu}^{r s}(\omega)_{L} \bar{u}_{\Sigma}^{s}, \text { etc }
$$

Euclidean Correlators

To compute these correlators need to compute Wick contraction topologies:

$\mathrm{C}_{s d}$

Referred to as the Non-Eye (top) and Eye (bottom) type diagrams

Euclidean Correlators

To compute these correlators need to compute Wick contraction topologies:

Referred to as the Non-Eye (top) and Eye (bottom) type diagrams

Euclidean Correlators

To compute these correlators need to compute Wick contraction topologies:

Referred to as the Non-Eye (top) and Eye (bottom) type diagrams

Euclidean Correlators

4-point function requires a current insertion on each leg (and disconnected diagram that we neglect here)

etc

Exploratory Calculation: Measurement details

- 2+1f Shamir domain-wall fermions
- $m_{\pi} \simeq 340 \mathrm{MeV}$
- $a \simeq 0.11 \mathrm{fm} \simeq(1785 \mathrm{MeV})^{-1}$
- $m_{N} \simeq 1200 \mathrm{MeV}$
- Lattice size $24^{3} \times 64(\times 16)_{L_{s}}$
- $m_{\Sigma} \simeq 1370 \mathrm{MeV}$

- Software: Grid + Hadrons
- Kinematics $k=0, p=\frac{2 \pi}{L}(1,0,0)$
- Gauge fixed Gaussian smeared sources
- Source-Sink sampling [hep-lat/2009.01029]
- Sparsened \mathbb{Z}_{2} noise loop estimation
- Restrict to parity conserving contribution

[github.com/paboyle/Grid]
[github.com/aportelli/Hadrons]

Exploratory Calculation: Preliminary Data

- Temporal component of the 4-point correlator with a source-sink separation $t_{f} / a=16$ and e.m. current at $t_{\jmath} / a=8$

- Observe good signal for the non-eye diagrams
- Stochastic estimation of eye diagrams give large errors dominating the total (Non-Eye < Eye)

Integrated Correlator

- Integrate amputated 4-point function within two windows $t_{H} \in\left[-T_{a}, 0\right]$ and $t_{H} \in\left[0, T_{b}\right]$

$$
\begin{aligned}
& I_{\mu}^{\rho}\left(T_{a}\right)=-i \int_{-T_{a}}^{0} d t_{H} \hat{\Gamma}_{\mu}^{(4)}\left(t_{H}\right)=-i \int_{0}^{\infty} d \omega \widetilde{\rho}_{\mu}(\omega)_{L} \frac{1-e^{-\left(\omega-E_{\Sigma}\right) T_{a}}}{\omega-E_{\Sigma}} \\
& I_{\mu}^{\sigma}\left(T_{b}\right)=-i \int_{0}^{T_{b}} d t_{H} \hat{\Gamma}_{\mu}^{(4)}\left(t_{H}\right)=-i \int_{0}^{\infty} d \omega \widetilde{\sigma}_{\mu}(\omega)_{L} \frac{1-e^{-\left(\omega-E_{\rho}\right) T_{b}}}{\omega-E_{p}}
\end{aligned}
$$

- Have the form of the spectral integrals in \mathcal{A}_{μ} up to $T_{a, b}$ exp terms (and FV corrections see [RH hep-lat/2209.15460])

$$
\widetilde{\mathcal{A}}_{\mu}^{\rho}=-i \int_{0}^{\infty} d \omega \frac{\widetilde{\rho}_{\mu}(\omega)_{\llcorner }}{\omega-E_{\Sigma}} \quad, \quad \widetilde{\mathcal{A}}_{\mu}^{\sigma}=-i \int_{0}^{\infty} d \omega \frac{\widetilde{\sigma}_{\mu}(\omega)_{\llcorner }}{\omega-E_{p}}
$$

- Remove T_{b} exp terms by taking $T_{b} \rightarrow \infty$
- $T_{a} \rightarrow \infty$ limit blows up for region of ρ_{μ} spectrum with $\omega<E_{\Sigma}$
- On this ensemble this is only the single proton intermediate state

Exploratory Calculation: Integrated 4-point functions

- Summing in the two time orderings

- Large fluctuations in the eye diagrams cancel giving Eye \lesssim Non-Eye
- Appears promising that with extra noise hits we can significantly improve results
- Can in principle remove growing exponential via a shift to H_{w} operator
- Unfortunately no signal observed after shift

Exploratory Calculation: Fitting

- Use fit ansatz with a single intermediate state exponential (energies fixed by m_{p} and m_{Σ} from 2-point functions)
- Example fits for temporal component and $t_{f} / a=16$ (Non-Eye diagrams only)

Exploratory Calculation: Preliminary Results

- Extract linear combinations of form factors f_{μ} : example values for f_{t}

Parameter	Result	$f_{t}=f_{t}^{\rho}+f_{t}^{\sigma}$
$f_{t}^{\rho, \mathrm{NE}}$	$2.16(31)$	$-4.7(21.8) \times 10^{-2}$
$f_{t}^{\sigma, \text { NE }}$	$-2.21(21)$	
$f_{t}^{\rho, \text { Eye }}$	$0.20(1.03)$	$-0.37(1.21)$
$f_{t}^{\sigma, \text { Eye }}$	$-0.57(71)$	
f_{t}^{ρ}	$2.52(1.62)$	$-0.25(1.75)$
f_{t}^{σ}	$-2.78(92)$	

NON-EYE

- Eye and total contributions have very large errors from stochastic loop estimation
- Non-eye contribution has $10-15 \%$ errors on separated spectral components, but have a cancellation when combined giving large errors
- More investigation needed into the cause of this cancellation (approx. $S U(3)_{F}$ symmetry?)

Exploratory Calculation: Preliminary Results

- Inverting the linear relation between $f_{t, z}$ and a, c give form factors

Form Factor	Value	(Stat)	
$\operatorname{Re} a^{\mathrm{NE}}$	5	(16)	MeV
$\operatorname{Re} c^{\mathrm{NE}}$	0.009	(30)	
$\operatorname{Re} a^{\text {Eye }}$	-58	(100)	MeV
$\operatorname{Re} c^{\text {Eye }}$	0.034	(173)	
$\operatorname{Re} a$	-53	(114)	MeV
$\operatorname{Re} c$	0.018	(249)	

- For reference phenomenological values at $q^{2}=0$:

$$
\operatorname{Re} a \sim 10 \mathrm{MeV} \quad, \quad \operatorname{Re} c \sim 10^{-2}
$$

- Note all fits made to data with $t_{f}=16 a \simeq 1.8 \mathrm{fm}$

Exploratory Calculation: Preliminary Results

- If we also include data with source-sink separation $t_{f}=12 a \simeq 1.3 \mathrm{fm}$ (data only available for non-eye diagrams)

Form Factor	Value	(Stat)	
$\operatorname{Re} a^{\mathrm{NE}}$	4	(5)	MeV
$\operatorname{Re} c^{\mathrm{NE}}$	0.030	(9)	

- Start to observe result for the non-eye contribution to the c form factor
- Requires fitting approx 0.3 fm from the source/sink operators
- Will have large uncontrolled excited state contributions that must be addressed

Conclusions/Outlook

Conclusions

- Working towards an exploratory computation of the RH decay with $m_{\pi} \simeq 340 \mathrm{MeV}$ using methods of [RH hep-lat/2209.15460]
- Errors currently dominated by stochastic loop estimation and large cancellation between two intermediate spectra

Outlook

- RH and RK decays would both benefit from improved loop estimation
- Physical point calculation will likely require baryon variance reduction techniques, and finite volume corrections become relevant

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646

Backup Slides

Source-Sink Sampling

- Contraction method fixes positions x and y fixed at time of inversion
- Full volume sum for momentum projection requires $\sim 14,000$ solves
- Use field sparsening approach to approximate with sum over N random position samples [hep-lat/2009.01029]
- Ideal error scaling is $1 / \mathrm{N}$ when applied to both the source and sink

Exploratory Calculation: Eye Diagrams

- Eye diagrams require loop propagators: $S(x \mid x) \forall x$

- Stochastic estimator with $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$ noise sources with spatial sparsening of 2 in each dimension
- Improve the signal-per-cost by $2 x$ over full volume noise [hep-lat/2202.08795]
- So far we have 1 hit of 16 noise sources measured, and are continuing to add
 additional hits using AMA approach

Intermediate state removal: Scalar shift

- Can remove the single proton state with a scalar operator shift to H_{w} (would also need pseudo-scalar shift for $k \neq 0$)
- Amplitude invariant due to chiral Ward identities [hep-lat/1212.5931]

$$
H_{W}^{\prime}=H_{W}-c_{S} \bar{d} s \quad \Rightarrow \quad \mathcal{A}_{\mu}^{\prime}=\mathcal{A}_{\mu}
$$

- Choose Cs such that

$$
\langle p(k)| H_{W}^{\prime}|\Sigma(k)\rangle=\bar{u}_{p}\left[a_{H}-c_{S} a_{S}\right] u_{\Sigma}=0 \quad \therefore \quad c_{S}=\frac{a_{H}}{a_{S}}
$$

- Scalar shift compared to non-eye diagrams
- No signal observed in the difference with current statistics
- Must remove single proton intermediate state by other methods

Exploratory Calculation: Form factor extraction

- Extract combinations form factors $\left(f_{\mu}\right)$ split into separate spectra (X) with traces

$$
\operatorname{Tr}\left[\widetilde{\mathcal{A}}_{\mu} P^{+} \gamma\right]=\zeta_{\mu, \gamma} f_{\mu}
$$

- $P^{+}=\left(1+\gamma_{t}\right) / 2$ projects positive parity external state
- $\zeta_{\mu, \gamma}$ accounts for artificial γ dependence
- We use the $\mu=t, z$ components related to the form factors by

$$
\binom{f_{t}}{f_{z}}=\left(\begin{array}{cc}
1 & m_{\Sigma}+m_{p} \\
m_{\Sigma}+m_{p} & q^{2}
\end{array}\right)\binom{a}{c}
$$

Exploratory Calculation: Preliminary Results

Parameter	Result	$f_{t}=f_{t}^{\rho}+f_{t}^{\sigma}$
$f_{t}^{\rho, \mathrm{NE}}$	$2.16(31)$	$-4.7(21.8) \times 10^{-2}$
$f_{t}^{\sigma, \mathrm{NE}}$	$-2.21(21)$	
$f_{t}^{\rho, \text { Eye }}$	$0.20(1.03)$	$-0.37(1.21)$
$f_{t}^{\sigma, \text { Eye }}$	$-0.57(71)$	
f_{t}^{ρ}	$2.52(1.62)$	$-0.25(1.75)$
f_{t}^{σ}	$-2.78(92)$	

Parameter	Result	$f_{z}=f_{z}^{\rho}+f_{z}^{\sigma}$
$f_{z}^{\rho, \mathrm{NE}}$	$-0.25(6)$ $f_{z}^{\sigma, \mathrm{NE}}$	$-2.23(4)$

