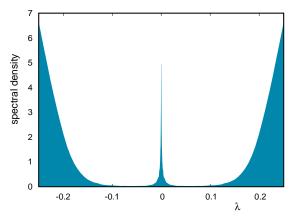
High temperature $U(1)_{A}$ restoration in the chiral limit

Tamás G. Kovács

Eötvös Loránd University, Budapest and Institute for Nuclear Research, Debrecen

Lattice 2023, August 1, 2023

Fate of chiral symmetry in QCD above T_{c}


- Banks-Casher: $\langle \bar{\psi}\psi \rangle \propto \rho(0)$ Chiral symmetry \iff Dirac spectrum near 0.
- Peak in the spectral density at 0 (quenched & dynamical).

```
Edwards et al. (1999); Alexandru & Horváth (2019, 2021); Kaczmarek et al. (2023); Ding et al. (2021).
```

- Peak suppressed by light dynamical quarks.
- Contribution of the peak to χ SB as $m \rightarrow 0$? (chiral condensate, $U(1)_A$ breaking)

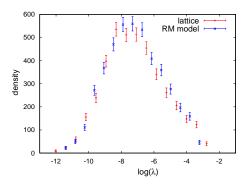
The spectral density of the overlap at $T = 1.1 T_c$

quenched, Wilson $\beta = 6.13$, $N_t = 8$, exact zero modes removed

Distribution of number of eigenvalues in peak consistent with mixing zero modes of free instanton gas. Vig & TGK (2021).

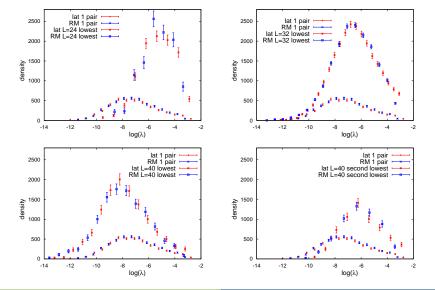
Instanon based random matrix model (quenched)

- Model of Dirac operator in the subspace of zero modes
- Quenched ideal instanton gas:
 - Choose n_i and n_a from independent Poisson distributions of mean $\chi V/2$.
 - Place (anti)instantons randomly in 3d box of size L^3 ($V = L^3/T$).
 - Construct $(n_i + n_a) \times (n_i + n_a)$ random matrix:


$$\begin{pmatrix}
n_i & n_a \\
0 & iW \\
iW^{\dagger} & 0
\end{pmatrix}$$

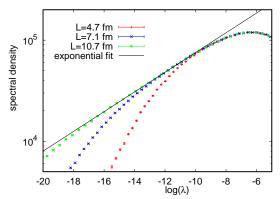
• $w_{ij} = A \cdot \exp(-B \cdot r_{ij})$, r_{ij} is the distance of instanton i and antiinstanton j.

Fit parameters to quenched overlap spectrum


quenched, Wilson $T = 1.1 T_c$, $N_t = 8$

- Three parameters:
 - χ_0 topological susceptibility instanton density
 - A, B parameters of the exponential mixing between zero modes
- Fit A, B to distribution of overlap spectrum lowest eigenvalue on 32³ × 8 configurations with only one IA pair

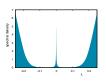
Perferct description of quenched overlap spectrum


Distribution of lowest and 2nd lowest eigenvalues – different volumes

Quenched spectral density singular at the origin

(in the $V \rightarrow \infty$ limit)

RM model simulation, parameters from quenched $T = 1.1 T_c$ overlap spectrum.


If
$$\rho(\lambda) \propto \lambda^{\alpha}$$
 and $y = \log(\lambda)$ then $\tilde{\rho}(y) \propto e^{(1+\alpha)y}$
 $\alpha = -0.775(5)$

Include dynamical quarks

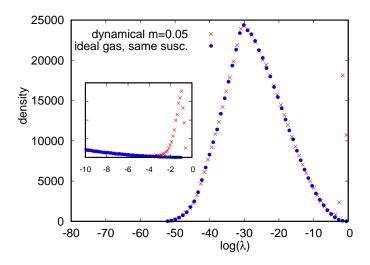
• On the lattice $\det(D+m)^{N_f}$ in Boltzmann weight

$$det(D+m) = \prod_{z m z} (\lambda_i + m) \times \prod_{bulk} (\lambda_i + m)$$

Bulk weakly correlated with zero mode zone

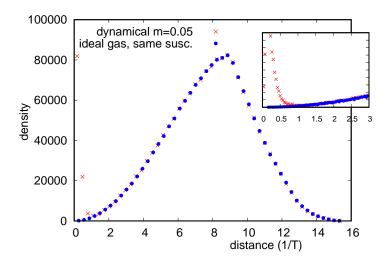
- Approximate det with $\prod_{j=1,\dots,m} (\lambda_j + m)$
- Consistently included in RM model:

$$P(n_i, n_a) = \underbrace{e^{-\chi_0 V} \frac{1}{n_i!} \frac{1}{n_a!} \left(\frac{\chi_0 V}{2}\right)^{n_i + n_a}}_{\text{free instanton gas}} \cdot \det(D + m)^{N_f}$$


Suppression of the spectral peak

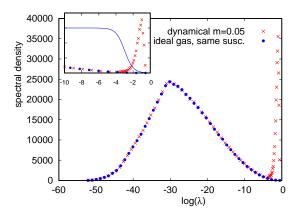
• If
$$|\lambda_i| \ll m$$
 \Longrightarrow $\prod_i (\lambda_i + m) \approx m^{n_i + n_a}$

$$\bullet \ \left(\frac{\chi_0 V}{2}\right)^{n_i+n_a} \cdot \det(D+m)^{N_f} \ \approx \ \left(\frac{m\chi_0 V}{2}\right)^{N_f \cdot (n_i+n_a)}$$


- Distribution of number of (anti)instantons still Poisson
- ullet Free gas, but susceptibility suppressed as $\chi_{\scriptscriptstyle 0}
 ightarrow m^{N_{\scriptscriptstyle f}} \chi_{\scriptscriptstyle 0}$
- ullet Instanton gas more dilute \Rightarrow $|\lambda_i|$ smaller
- Even in the chiral limit $|\lambda_i| \ll m \implies$ free instanton gas

Spectral density – full QCD vs. ideal instanton gas

Instanton-antiinstanton molecules


density of closest opposite charge pairs at given distance

What about Banks-Casher?

Free instanton gas contribution dominates condensate

$$\langle \bar{\psi}\psi \rangle pprox \langle \sum_{i} \frac{m}{m^2 + \lambda_{i}^2} \rangle pprox \underbrace{\left(rac{ ext{avg. number of in-}}{ ext{stantons in free gas}}
ight)}_{m^{N_{\mathrm{f}}}\chi_0 \, V} \cdot \frac{1}{m} = m^{N_{\mathrm{f}} - 1} \chi_0 \, V$$
 $\lambda_{i} \ll m$

Fate of chiral symmetry as $m \rightarrow 0$

• Free IA gas eigenvalues $|\lambda_i| \ll m$ for any quark mass.

$$\bullet \ \langle \bar{\psi}\psi \rangle \approx \langle \sum_i \frac{m}{m^2 + \lambda_i^2} \rangle \approx \underbrace{\left(\frac{\text{avg. number of in-}}{\text{stantons in free gas}} \right)}_{m^{N_f} \chi_0 V} \cdot \frac{1}{m} = m^{N_f - 1} \chi_0 V$$

$$\bullet \ \chi_{\pi} - \chi_{\delta} \approx \langle \sum_{i} \frac{m^{2}}{(m^{2} + \lambda_{i}^{2})^{2}} \rangle \approx \underbrace{\underbrace{\begin{pmatrix} \text{avg. number of in-}} \\ \text{stantons in free gas} \end{pmatrix}}_{m^{N_{i}} \chi_{0} V} \cdot \frac{1}{m^{2}} = m^{N_{i}-2} \chi_{0} V$$

- Contribution of IA molecules in $m \to 0$ limit: $|\lambda_i| \gg m$
 - $\bullet~$ For $N_f \leq 2$ numerically small ($\ll 1\%~$ for realistic parameters).
 - Contribution to $\langle \bar{\psi}\psi \rangle \propto m$
 - Contribution to $\chi_{\pi} \chi_{\delta} \propto m^2$

Conclusions

- Above T_c details of the quenched overlap spectrum described by simple free instanton random matrix model.
- Spectral density has singular peak at zero.
- With dynamical quarks:
 - Singular peak remains but gets suppressed.
 - Free instanton gas (\rightarrow singular peak) + IA molecules.
 - $\bullet \ \ \, \text{For} \, \, \textit{N}_{f} \leq 2, \ \, \text{as} \, \, \textit{m} \rightarrow 0 \ \ \, \chi \text{SB dominated by singular spectral peak}.$
- Chiral limit with N_f degenerate light quarks:
 - $\langle \bar{\psi} \psi \rangle \approx m^{N_{\rm f}-1}$ agrees with small m expansion of the free energy Kanazawa and Yamamoto (2015)
 - $\chi_{\pi} \chi_{\delta} \approx m^{N_f-2}$