Complex potential at T>0 in 2+1 flavor QCD

Peter Petreczky

Work with A. Bazavov, O. Kaczmarek, R. Larsen, S. Mukherjee, A. Rothkopf,

J. Weber (HotQCD Collaboration)

Does color screening in high temperature QCD leads to quarkonium melting?

 $Q\bar{Q}$ free energy shows screening

Quark anti-quark potential at *T>0*

Conjecture, Matsui and Satz, PLB 178 (86) 416
$$-\frac{4}{3}\frac{\alpha_s}{r} + \sigma r \rightarrow -\frac{4}{3}\frac{\alpha_s}{r}e^{-m_D r}, T > T_c$$

Extending pNRQCD to T>0: the potential is complex, the real part can have thermal correction but is not necessarily screened, except when $r \sim 1/m_D$

Based on weak coupling

Laine, Philipsen, Romatschke, Tassler, JHEP 03 (06) 054 Brambilla, Ghiglieri, PP, Vairo, PRD 78 (08) 014017

Calculate the potential non-perturbatively on the lattice by considering Wislon loops of size $r \times \tau$ at T>0

$$W(r, \tau, T) = \int_{-\infty}^{\infty} \rho_r(\omega, T) e^{-\omega \tau}$$

If potential at T > 0 exists the $\rho_r(\omega, T)$ should have a well defined peak at $\omega \simeq \text{Re}V(r,T)$, and the width of the peak is ImV(r,T)

Rothkopf, Hatsuda, Sasaki, PRL 108 (2012) 162001

Challenge: reconstruct
$$\rho_r(\omega, T)$$

Hybrid potentials,

pairs of static-light mesons ...
$$\rho_r(\omega,T=0) = \delta(\omega-V(r)) + \sum_n \delta(\omega-E_n(r))$$

Details of the lattice calculations

HISQ action, T = 153 - 352 MeV

$$a = 0.028 \text{ fm}, m_l = m_s/5, (m_{\pi} = 320 \text{ MeV}), 96^3 \times N_{\tau}, N_{\tau} = 56, 36, 32, 28, 24, 20$$

$$a = 0.040 \text{ fm}, m_l = m_s/20, (m_{\pi} = 160 \text{ MeV}), 64^3 \times N_{\tau}, N_{\tau} = 64, 32, 30, 28, 26, 24, 22,$$

 $20, 18, 16$

$$a = 0.049 \text{ fm}, m_l = m_s/20, (m_{\pi} = 160 \text{ MeV}), 64^3 \times N_{\tau}, N_{\tau} = 64, 26, 24, 22, 20, 18, 16$$

Calculate correlation functions of temporal Wilson line instead of Wilson loops (better signal)

Gradient (Zeuthen) flow for noise reduction:

$$A_{\mu}(x) \to B_{\mu}(\tau_F, x) B_{\mu}(0, x) = A_{\mu}(x) \qquad \partial_{\tau_F} B_{\mu}(\tau_F, x) = -g_0^2 \frac{\delta S_{\text{YM}}[B]}{\delta B_{\mu}(\tau_F, x)}$$

Gauge fields are smeared in the radius $\sqrt{8\tau_F}$

$$\sqrt{8\tau_F}T = 0.04 - 0.05$$

$$m_{eff}(r, \tau, T) = -\partial_{\tau} \log(W(\tau, r, T)) \simeq \frac{1}{a} \ln \frac{W(r, \tau, T)}{W(r, \tau + a, T)}$$

Spectral function and effective masses

See, Bala et al (HotQCD), PRD 105 (2022) 054513

$$W^{high}(r,\tau) = \int_{-\infty}^{\infty} d\omega \rho_r^{high}(\omega) e^{-\omega \tau}$$

On the lattice:

Whigh
$$(r, \tau) = W(r, \tau, T = 0) - A_0 \exp(-V(r)\tau)$$

Only tiny T-dependence for small τ

Distortions at small τ due to flow

$$W^{sub}(r,\tau,T) = W(r,\tau,T) - W^{high}(r,\tau)$$

Spectral function and effective masses

- No plateau in m_{eff} at T>0 and only small T-dependence for small τ
- Distortions for small τ are largely removed by subtraction

 m_{eff} for the subtracted correlator has milder τ -dependence, which is approximately linear

If $\rho_r(\omega, T)$ is Gaussian m_{eff} is linear in τ

$$m_{eff}(\tau \simeq 0, r, T) \simeq V(r, T = 0)$$

Model spectral function and the complex potential

$$\begin{split} \rho_r^{peak}(\omega,T) &= \frac{A}{\pi} \frac{\Gamma(\omega,r,T)}{(\omega - \text{Re}V(r,T))^2 + \Gamma^2(\omega,r,T)}. \qquad \rho_r^{tail}(\omega,T) = A^{tail}\delta(\omega - E^{tail}) \\ \Gamma(\omega,r,T) &= \begin{cases} \Gamma_0(r,T) & -2\Gamma_0 < \omega < 2\Gamma_0 \\ 0 & n \text{ otherwise} \end{cases} \end{split}$$

ReV(r,T)

ReV(r,T) shows only tiny temperature dependence and no hint of screening!

 $\rho_r^{peak}(\omega, T) \sim \exp(-(\omega - \text{Re}V(r, T))^2/(\text{Im}V(r, T))^2)$ The same result if

6

Imaginary part of the potential

circles: a = 0.028 fm, squares: a = 0.040 fm, triangles: a = 0.049 fm

 $\operatorname{Im}V(r,T)$ increases with increasing temperature and distance

No apparent quark mass effects for T > 196 MeV

No apparent cutoff effects

Imaginary part of the potential (cont'd)

 $\mathrm{Im}V(r,T)/T$

For 244 MeV < T < 352 MeV ${\rm Im} V(r,T)/T$ approximately scales with rT as one would expect based on weak coupling calculations

Summary

- The complex $Q\bar{Q}$ potential has been estimated in 2+1 flavor QCD using HISQ action with a=0.028 fm, a=0.040 fm and a=0.049 fm
- The real part of the potential is not screened contrary to common expectations
- The imaginary part of the potential increases with the temperature and distance for 244 MeV < T < 352 MeV scales with the temperature