QCD topology with background electromagnetic fields on the lattice

B. Brandt, F. Cuteri, G. Endrődi, J. J. Hernández Hernández and G. Markó

Lattice 2023, Fermilab, Batavia, Illinois, USA
Outline

- Topology in QCD with EM fields
- The topological susceptibility
- The axion-photon coupling
- Conclusions and further work
Topology in QCD with EM fields
Definition of Q_{top}:

$$Q_{\text{top}} = \int d^4 x \, q_{\text{top}}(x), \quad q_{\text{top}} = \frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \Tr G_{\mu\nu} G_{\rho\sigma}.$$

Adding electric or magnetic fields *separately*: no changes in topology.

$$\langle Q_{\text{top}} \rangle = 0.$$

If $F_{\mu\nu} \neq 0$ such that $\vec{E} \cdot \vec{B} \neq 0$ it can be interpreted as an effective θ-therm D'Elia et al., 2012.

Hence, non-orthogonal EM fields \iff non-trivial topology.

$$\langle Q_{\text{top}} \rangle \neq 0.$$
The topological susceptibility
Is the second moment of Q_{top}: $\chi_{\text{top}} = \frac{\langle Q_{\text{top}}^2 \rangle}{V_4}$

It is also the mass of the axion:

$$f_a^2 \frac{\delta^2}{\delta a^2} \log Z(a) \bigg|_{a=0} = \frac{\partial^2}{\partial \theta^2} \log Z(\theta) \bigg|_{\theta=0} \quad \leftrightarrow \quad m_a^2 f_a^2 = \chi_{\text{top}}.$$

Hence, an analysis of χ_{top} gives information on m_a.

Current estimate from ChPT at zero T: $\chi_{\text{top}}(LO) = [75.5(5)\text{MeV}]^4$ Cortona et al 2016.

- Lattice calculations give almost the same central value but with a bigger error, $\chi_{\text{top}} = [75.6(1.8)(0.9)\text{MeV}]^4$ Borsanyi et al 2016.
- ChPT also predicts a mild enhancement with B at low T Adhikari 2022.
Index theorem says \mathcal{D} has zero modes when $Q_{\text{top}} \neq 0$.

Staggered operator lacks these zero modes \rightarrow huge lattice artifacts, specially for high temperatures (we are talking of several orders of magnitude!).

One possible solution: substitute the smallest eigenvalues of D_{stagg} with their continuum values Borsanyi et al 2016.

How? Reweighting each configuration by:

$$
\prod_f \prod_{i=1}^{2|Q_{\text{top}}|} \prod_{\sigma = \pm} \left(\frac{2m_f}{i\sigma \lambda_i + 2m_f} \right)^{n_f/4}.
$$
Simulation setup for χ_{top}

- Improved staggered quarks with 2+1 flavours and physical quark masses.
- $N_s \times N_t = 24^3 \times 6, 24^3 \times 8, 28^3 \times 10, 36^3 \times 12$.
- $T = 110$-300 MeV, $eB = 0, 0.5, 0.8 \text{ GeV}^2$.
- Gradient Flow used to reduce the UV fluctuations and control the topology
 Lüscher 2010.
$$\chi_{\text{top}}$$: preliminary results

Topology controlled after applying the gradient flow.

$$28^3 \times 10, T = 211 \text{ MeV}, \langle Q \rangle = -0.1 \pm 0.06$$
Gradient flow evolution of χ_{top}. Note the plateaus.
Separation between chiral and non-chiral eigenvalues. $Q = -3$.
χ_{top}: preliminary results

Effect of the reweighting.

T \approx 150 \text{ MeV}, eB = 0
Effect of the reweighting.

$T \approx 150 \text{ MeV, } eB = 0$

$\chi_{\text{top}} \, \text{fm}^{-4}$

PRELIMINARY

No RW
$eB = 0$
1606.07494, Borsanyi et al.
Continuum limit for a single temperature.

\(T \approx 150 \text{ MeV}, \ eB = 0 \)
The axion-photon coupling
The photon-axion coupling $g_{a\gamma\gamma}^{QCD}$

- The axion couples directly and indirectly to photons.

- ChPT calculations show that the coupling decomposes into two terms, one model dependent and one model independent.

- Current estimate from ChPT: $g_{a\gamma\gamma} = g_{a\gamma\gamma}^0 + g_{a\gamma\gamma}^{QCD} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4) \right)$

- We want to compute the QCD dependent part of the coupling \longrightarrow no need to include axions on the lattice!
If we include both electric and magnetic background fields, the only CP odd operators in our theory are:

\[\text{Tr} \tilde{G}^{\mu \nu} G_{\mu \nu} \quad \& \quad E \cdot B. \]

So by symmetry arguments, \(Q_{\text{top}} \) can only be (for weak fields):

\[Q_{\text{top}} \propto E \cdot B + \mathcal{O} \left([E \cdot B]^3 \right). \]

By looking at \(Z \):

\[\frac{\delta \log Z(a)}{\delta a} \bigg|_{a=0} = \frac{\langle Q_{\text{top}} \rangle_{E,B}}{f_a} \rightarrow g_{a \gamma \gamma} f_a = \frac{T}{V} \frac{\partial}{\partial (E \cdot B)} \langle Q_{\text{top}} \rangle_{E,B} \bigg|_{E,B=0}. \]

So for homogeneous, static and weak EM fields

\[\frac{T}{V} \langle Q_{\text{top}} \rangle_{E,B} \approx \frac{g_{a \gamma \gamma}^{QCD} \cdot f_a}{e^2} e^2 E \cdot B \quad \text{and} \quad g_{a \gamma \gamma}^{QCD} < 0. \]
Improved staggered quarks with 2+1 flavours and physical quark masses.

\[N_s \times N_t = 24^3 \times 32, \ 32^3 \times 48, \ 40^3 \times 48. \]

\[T = 0. \]

We keep \(\mathbf{E} \cdot \mathbf{B} \) in the linear response region.

Imaginary electric fields (sign problem).

Gradient Flow used to reduce the UV fluctuations and control the topology.

Lüscher 2010.
Shift of Q_{top} at non-zero $\mathbf{E} \cdot \mathbf{B}$. Effect also shown in D’Elia et al 2016.
Linear response for weak fields.

\[T \langle Q \rangle_{E,B} \text{ GeV}^4 \]

\[e^2 \vec{E} \cdot \vec{B} \text{ GeV}^4 \]

\[\times 10^{-3} \]

\[24^3 \times 32, T \approx 0 \text{ MeV} \]

\[\times 10^{-5} \]

Slope method

Lattice points
Topology controlled after applying gradient flow. (32³ × 48).
Approaching the continuum limit.
Conclusions and further work
Conclusions and further work

- We have shown:
 - that the topology is under control.
 - how the would-be zero modes introduce huge lattice artifacts for χ_{top}.
 - a linear response of $\langle Q_{\text{top}} \rangle$ with $\mathbf{E} \cdot \mathbf{B}$ for weak fields.
 - we are getting closer to obtaining continuum limit extrapolations for χ_{top} and $g_{\alpha\gamma\gamma}^{QCD}$.

- Further work:
 - further understand the would-be zero modes at low temperatures.
 - generate more statistics and perform the continuum limit for both observables.
 - implement the reweighting technique for $g_{\alpha\gamma\gamma}^{QCD}$.
Thank you for your attention!
Backup slides
EM fields can induce topologies in the gluon sector. But how? \[\rightarrow\] Index theorem.

The index theorem says (for QCD) Atiyah, Singer ’71:

\[
\text{Index}(\not{D}) \equiv n_- - n_+ = Q_{\text{top}}
\]

Since in QCD \(\langle Q_{\text{top}} \rangle = 0\), we don’t see imbalances in chirality.

But after including electromagnetic fields the situation is different:

\[
\text{Index}(\not{D}) \equiv n_- - n_+ = Q_{\text{top}} + Q_{U(1)}.
\]

We have two different topological contributions to the zero modes.

Path integral favours as little zero modes as possible: \(\det M \uparrow\uparrow\).

Hence, it selects gluon field configurations such that:

\[
Q_{U(1)} \uparrow \iff Q_{\text{top}} \downarrow.
\]