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Introduction Discretised L Discretised L2 Results

Hamiltonian of lattice gauge theories
• [Kogut and Susskind, 10.1103/PhysRevD.11.395 (1975)]

H = g2
0
4

∑
x,c,k

(
L2

c,k(x) +R2
c,k(x)

)
− 1

2g2
0

∑
x,k<l

Tr RePkl(x)

• g0 bare gauge coupling
• x coordinate on the spacial lattice, k direction, c color index
• Plaquette operator

Pkl(x) = Uk(x)Ul(x + k̂)U†
k(x + l̂)U†

l (x)
• Suited for tensor networks and possibly quantum computers simulation

• Electric and magnetic part
• Most of the investigation are done in a basis of the Hilbert space H where the electric part is

diagonal [Davoudi, Raychowdhury and Shaw, 10.1103/PhysRevD.104.074505 (2021)]
• We are investigating the formulation where the magnetic part is diagonal [Jakobs et al.,

10.1140/epjc/s10052-023-11829-9, arXiv:2304.02322 (2023)]
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SU(2) construction

• We need a discretization of SU(2)
• Choose a finite set of elements
• For each point we define a state |U⟩ ∈ H and an SU(2) matrix

U =
(
ŷ0 + iŷ1 ŷ2 + iŷ3

−ŷ2 + iŷ3 ŷ0 − iŷ1

)
, ŷ2

3 = 1 −
2∑

i=0
ŷ2

i

• The elements yi are operators on H
ŷi |U⟩ = yi |U⟩

• This defines the action of U : H → H
• Alternatively we can work with the parametrization U = eiα⃗·τ⃗
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Commutation relations
• Given U the momenta are defined via the commutation relations

[Lc, Umn] = (τc)mjUjn [Rc, Umn] = Umj(τc)jn

• τc the generator of SU(2)
• Moreover the group structure (similar for R)

[La, Lb] = fabcLc

• fabc the structure constants
• In the full continuum SU(2) these are fulfilled by

Lcf(U) = −i d
dβ

(
eiβτcU

) ∣∣∣∣
β=0

Rcf(U) = −i d
dβ

(
Ueiβτc

) ∣∣∣∣
β=0

• How to define L and R in a finite subset of SU(2)?
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Introduction Discretised L Discretised L2 Results

Discretised L construction
• Perform a Delaunay triangulation of the points in SU(2) [B. N. Delaunay (1934)]
• The result is a set of simplices C = {i0, i1, i2, i3}

• Every U can be written as U = eiα⃗·τ⃗Ui0

• Every function can be approximated within C as

f(U) = f(Ui0) + ∇⃗fi0 · α⃗+ O(α2)

• Imposing that the linear approximation reproduces the
function at the verticesα⃗T

1
α⃗T

2
α⃗T

3

 ∇⃗fi0 =

f̃(i1) − f̃(i0)
f̃(i2) − f̃(i0)
f̃(i3) − f̃(i0)


that defines L⃗ = −i∇⃗

i0

i1

i2

C
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• We average overall simplices containing the point i to have a better estimate
• A similar construction can be done for R writing the link as U = Ui0e

iα⃗·τ⃗

• In the Hamiltonian we need L2

• Simply taking the square is unlikely to give good approximation since we taking linear aproximation
to construct L

• We use the Finite Element method to approximate L2
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Discretised L2 construction
• Define hat functions on the triangulated lattice:
ϕi0(Ui) = δi0,i and linear piece-wise in between points

• Project the Laplace equation on those function ∆u = f =⇒ ⟨∆u, ϕi⟩ = ⟨f, ϕi⟩

⟨∆u, ϕi⟩ =
∑

C

∫
C

∆uϕidV

= −
∑

C

∫
C

∇⃗u · ∇⃗ϕidV +
∑

C

∫
∂C

n⃗ · ∇⃗uϕidS

• Expand u =
∑
ujϕj

= −
∑

C

∑
j

uj

∫
C

∇⃗ϕj · ∇⃗ϕidV = Sijuj

• if i and j are not connected by a simplex Sij = 0 =⇒ S
is a sparse matrix

i0
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• The r.h.s approximated as

⟨f, ϕi⟩ =
∑

C

∫
fϕi = vifi with vi =

∑
C|i∈C

V ol(C)
4

• The Laplace equation
∆U = f → Sijuj = vifi

• So the discrete version of L2

L2
ij = − 1

vi
Sij

• With this construction L2 = R2 and local
• L2 a local operator
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Introduction Discretised L Discretised L2 Results

Linear Discretization
• We try a list of partitioning of SU(2) [Jakobs et al., 10.1140/epjc/s10052-023-11829-9,

arXiv:2304.02322 (2023)]
• generalizable to SU(3)
• Asymptotically isotropic in the group
• Arbitrary number of elements

• Here we present the so-called linear partitioning

Lm :=
{

1
M

(y0, y1, y2, y3)

∣∣∣∣∣
3∑

i=0
|yi| = m, yi ∈ Z

}
, U = 1

M

(
y0 + iy1 y2 + iy3

−y2 + iy3 y0 − iy1

)

M :=

√√√√ 3∑
i=0

j2
i .

• Number of elements ∝ m3

• Mean distance ∝ 1
m
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Spectrum of L2

0 10 20 30 40 50

i

0

5

10

15

20

25

λ
i

Continuum

L25

L10

L6

L5

L4

• In the continuum

λ = {J(J + 2) , J = 0, 1, 2, ...}

multiplicity (J + 1)2

• The low energy spectrum is approaching the
continuum with m → ∞
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Spectrum of L2

10−2

10−1

λ15 λ30

10−2

10−1

|λ
P
−
λ
|/λ

λ6 λ14

10−5 10−4 10−3

N−1

10−3

10−2

λ2

10−5 10−4 10−3

λ5

• λP eigenvalue of the discretized L2

• Fit (λP − λ)/λ = a
( 1

N

)b

• a in [1, 10], b ∼ 0.6
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Commutator [Li, Lj] and [Li, U ]

10−1

100

r L
U

[L3, U11]

Y5,5,5

Y2,2,2

Y1,0,0

10−4 10−3 10−2

N−1

10−1

100

101

r L
L

[L1, L2]

• Eigenfunction of L2 4d-spherical harmonics
YJ,l1,l2

• Evaluate the commutator

wLU = ([La, Ujl] − (τa)jiUil) · YJ,l1,l2

wLL = ([La, Lb] + 2iϵabcLc) · YJ,l1,l2

• mean deviation weighted by barycentric cell
volume v(i) =

∑
C|i∈C Vol(C)/4

rLU =
∑

i

v(i)|wLU (i)|

rLL =
∑

i

v(i)|wLL(i)|
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1+1D SU(2) with fermions

• Hamiltonian

Ĥ = µ
∑
x

2∑
c=1

(−1)xϕc†
x ϕ

c
x + 1

2
∑

a

∑
x

[
ϕc†
x U

cc′

x ϕc′

x+1 + H.c.
]

+ g2

2
∑
x

L2(x)

• Gauss’s law
Ga

x = La
x −Ra

x − 1
2ϕ

†
xτ

aϕx

the physical states are the one Ga |ψ⟩ = 0
• To ensure that the low spectrum of H satisfy the Gauss’s law we add a penalty term in the

Hamiltonian
ĤP enalty = κ

∑
x

G2(x)
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Spectrum Ĥ

10−1

100

λ1
10−2

10−1

10−14

10−13

λ2
2× 10−16

3× 10−16
4× 10−16

6× 10−16

10−14

10−12

|λ
in

t
−
λ
i|

λ3
10−17

10−16

10−15
|〈∑

c,
k
(G

k c
)2
〉|

10−3

10−2

λ4
10−4

10−3

10−3 10−2 10−1

N−1

10−1

100

λ5

10−3 10−2 10−1

N−1

10−2

10−1

µ = 0.20, 1/g2 = 2.00,
κ = 10.00, 2 sites

• For N large enough the exact result is
recovered

• For finite N also the Gauss’s law operator Ga

has discretization effects
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Summary

• For a given subset of SU(2) we construct the canonical momentum operator L and L2 in the base
where the links U are diagonal

• For the number of point in the SU(2) partition N → ∞:
• the commutation relations [Li, Lj ] and [Li, U ] are fulfilled
• The continuum spectrum is recovered in the free and interacting theory

• Construction generalizable to SU(N)
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Outlook

• Investigation on 1 + 2D (ideally 1 + 3D)
• Investigate the effects of breaking the commutation relation for finite N
• Compare the cost with other approaches
• A different construction of L and L2 still based on a discrete set of SU(2) will be presented in the

following talk S. Romiti, "Simulating the lattice SU(2) Hamiltonian with discrete manifold"

Thank you for your attention
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