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Hamiltonian of lattice gauge theories
[Kogut and Susskind, 10.1103/PhysRevD.11.395 (1975)]

2

90 2 2 1
H= vy Z (Lc,k(IB) + Rc,k(iﬁ)) - % Z TrRePy;(x)
x,c,k @, k<l

go bare gauge coupling

® x coordinate on the spacial lattice, &k direction, ¢ color index

Plaquette operator R .
Py (@) = Uy(@)Ui(x + k)Uf (@ + U] (x)

Suited for tensor networks and possibly quantum computers simulation
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Hamiltonian of lattice gauge theories
[Kogut and Susskind, 10.1103/PhysRevD.11.395 (1975)]

2
g . 1

H= ZO > (L24() + R y(2) — 5 > TrRePy(w)

x,c,k x, k<l

go bare gauge coupling

® x coordinate on the spacial lattice, &k direction, ¢ color index

Plaquette operator R .
Py (@) = Uy(@)Ui(x + k)Uf (@ + U] (x)

Suited for tensor networks and possibly quantum computers simulation

Electric and magnetic part

Most of the investigation are done in a basis of the Hilbert space H where the electric part is
diagonal [Davoudi, Raychowdhury and Shaw, 10.1103/PhysRevD.104.074505 (2021)]
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Hamiltonian of lattice gauge theories
[Kogut and Susskind, 10.1103/PhysRevD.11.395 (1975)]

H=%%"(124(2) + B24(2)) -

x,c,k

1
@ Z TrRePkl(a:)
0 2 k<t

® g bare gauge coupling
® x coordinate on the spacial lattice, &k direction, ¢ color index
® Plaquette operator

Py (@) = Uy(@)Ui(x + k)Uf (@ + U] (x)
® Suited for tensor networks and possibly quantum computers simulation
® Electric and magnetic part

® Most of the investigation are done in a basis of the Hilbert space H where the electric part is
diagonal [Davoudi, Raychowdhury and Shaw, 10.1103/PhysRevD.104.074505 (2021)]

® We are investigating the formulation where the magnetic part is diagonal [Jakobs et al.,
10.1140/epjc/s10052-023-11829-9, arXiv:2304.02322 (2023)]
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SU(2) construction

We need a discretization of SU(2)

Choose a finite set of elements

® For each point we define a state |U) € H and an SU(2) matrix

. I 2
Jo+i01 Y2+ 13 2 2
U= hY U A N =1- :

(yz +1i0s  Go — Zyl) Ys Z vi

The elements y; are operators on H
9:|U) =i |U)

This defines the action of U : H — H

F

Alternatively we can work with the parametrization U = '@
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Commutation relations

Given U the momenta are defined via the commutation relations
[Lm Umn] = (Tc)ijj [Rca Umn} = Umj (Tc)jn
® 7. the generator of SU(2)

® Moreover the group structure (similar for R)
[Laa Lb] = fabch

fabe the structure constants
In the full continuum SU(2) these are fulfilled by

L.f(U) = —i% (e"™U) ‘

R.f(U) = —i% (Ue) ‘

B=0

B=0
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Commutation relations

Given U the momenta are defined via the commutation relations
[Lm Umn] = (Tc)ijj [Rca Umn} = Umj (Tc)jn
® 7. the generator of SU(2)

® Moreover the group structure (similar for R)
[Laa Lb] = fabch

fabe the structure constants
In the full continuum SU(2) these are fulfilled by

L.f(U) = i (e"™U) ‘

a3 o
_ 4 b
R.f(U) = zd/B (Ue™e) L_O

How to define L and R in a finite subset of SU(2)?
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Discretised L construction
® Perform a Delaunay triangulation of the points in SU(2) [B. N. Delaunay (1934)]

® The result is a set of simplices C = {ig, i1, 12,43}

12

10
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Discretised L construction
® Perform a Delaunay triangulation of the points in SU(2) [B. N. Delaunay (1934)]

® The result is a set of simplices C = {ig, i1, 12,43}

® Every U can be written as U = '@ 7U;,

® Every function can be approximated within C as

f(U) = f(Um) + 6fm ~a+ O(QQ) Z.Z

10
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Discretised L construction
® Perform a Delaunay triangulation of the points in SU(2) [B. N. Delaunay (1934)]

® The result is a set of simplices C = {ig, i1, 12,43}

® Every U can be written as U = '@ 7U;,

® Every function can be approximated within C as

f(U) = f(Ulo) + 6flo A+ O(QQ) Z.Z
® |Imposing that the linear approximation reproduces the 70
function at the vertices
ar\ f(ix) — flio)
@g Vfic = | fli2) = f(io) i1
ag f(is) — f(io)

that defines [, = —iV
5/16



Discretised L
oe

We average overall simplices containing the point ¢ to have a better estimate
A similar construction can be done for R writing the link as U = U;,e!®7
In the Hamiltonian we need L?

Simply taking the square is unlikely to give good approximation since we taking linear aproximation
to construct L

We use the Finite Element method to approximate L?
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Discretised L? construction

® Define hat functions on the triangulated lattice:
®io (Ui) = 04,,; and linear piece-wise in between points

® Project the Laplace equation on those function Au = f = (Au, ¢;) = (f, ¢:)

(A, &) Ecj/c uddV
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Discretised L? construction

® Define hat functions on the triangulated lattice:
®io (Ui) = 04,,; and linear piece-wise in between points

® Project the Laplace equation on those function Au = f = (Au, ¢;) = (f, ¢:)

(Au, ¢;) = /Au(bde

:_z/wwidmw
c Jc c
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Discretised L? construction

® Define hat functions on the triangulated lattice:
®io (Ui) = 04,,; and linear piece-wise in between points

® Project the Laplace equation on those function Au = f = (Au, ¢;) = (f, ¢:)

(Au, ¢;) = /Au(bde

:_z/wwidmw
c Jc c

® Expand u =) u;¢p;

= — Z Z’LLj /C ﬁqu . ﬁ(bldV = Siju]‘
c J
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Discretised L? construction

® Define hat functions on the triangulated lattice:
®io (Ui) = 04,,; and linear piece-wise in between points

® Project the Laplace equation on those function Au = f = (Au, ¢;) = (f, ¢:)

(Au, ¢;) = /Au(bde

:_z/wwidmw
c Jc c

® Expand u =) u;¢p;

= — ZZUJ /C ﬁqu . ﬁ(bldV = Siju]‘
c J

® if ¢ and j are not connected by a simplex S;; =0 = §
is a sparse matrix 7/16
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® The r.h.s approximated as

- o it o S VOO
<fa¢i>;/f¢ivifi with v, = Z T

ClieC

8/16



Introduction Discretised L Discretised L2
000

® The r.h.s approximated as

_ o with b — Vol(C)
<f,¢i>;/f¢lvzfz with v; = Z 1

ClieC

® The Laplace equation
AU = f — Sijuj = 'Uifi

Results
00000000
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® The r.h.s approximated as
_ e o Vol(C)
<fa ¢1> = EC /f¢1 = vzfz with  v; = E 1

® The Laplace equation
AU = f — Sijuj = 'Uifi

® So the discrete version of L2

1
L} = —v—isij
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The r.h.s approximated as

_ o with b — Vol(C)
<f,¢i>;/f¢lvzfz with v; = Z 1

ClieC

The Laplace equation
AU = f — Sijuj = 'Uifi

So the discrete version of L2 L
2. =—-=5,
(¥ v; ]

With this construction L? = R? and local

L? a local operator
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Linear Discretization

® We try a list of partitioning of SU(2) [Jakobs et al., 10.1140/epjc/s10052-023-11829-9,
arXiv:2304.02322 (2023)]

® generalizable to SU(3)
® Asymptotically isotropic in the group
® Arbitrary number of elements
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Linear Discretization

® We try a list of partitioning of SU(2) [Jakobs et al., 10.1140/epjc/s10052-023-11829-9,
arXiv:2304.02322 (2023)]

® generalizable to SU(3)
® Asymptotically isotropic in the group
® Arbitrary number of elements

® Here we present the so-called linear partitioning

3
L (yo+iyi v +iys
i = m, iEZ R U=— . .
2 luil Y } M(—y2+zy3 Yo — iy

1
Lm = { (yan17y27y3)
=0

M

9/16



Introduction Discretised L Discretised L2 Results
000 (e]e] (o]e) 00000000
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® Number of elements x m3
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Linear Discretization

® We try a list of partitioning of SU(2) [Jakobs et al., 10.1140/epjc/s10052-023-11829-9,
arXiv:2304.02322 (2023)]

® generalizable to SU(3)
® Asymptotically isotropic in the group
® Arbitrary number of elements

® Here we present the so-called linear partitioning

3
L (yo+iyi v +iys
i = m, iEZ R U=— . .
2 luil Y } M(—y2+zy3 Yo — iy

1
Lm = { (yan17y27y3)
=0

M

® Number of elements x m3

1

® Mean distance o
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Spectrum of L?

25 4
20 A
15 1 ® |n the continuum
< A={J(J+2), J=012..}
10 A
e o Ly multiplicity (J + 1)2
N o L ® The low energy spectrum is approaching the
4 Le continuum with m — oo

000 o L5

0] & L
0 0o 20 s 40 50
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Spectrum of L?

10-t

102 E
A1s Aso

10~ '

i ® \p eigenvalue of the discretized L2
. b

As At ° Fit Ap—A)/A=a (%)
' ' ' ' * qin[1,10], b ~ 0.6

10-2
A2 As

1073

10-5 T4 10-5 10-5 T4 10-5
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Commutator [L;, L;] and [L;, U]

At %0 ® Eigenfunction of L? 4d-spherical harmonics
10° 4
A
AR 6© o ° YJ7l1,l2
AAA o0 6 °
& <><><><> 0© A Yigs ® Evaluate the commutator

wr = ([_La7 Lb] + 2i€abCLC) : YJ,ll,ZQ

=
- MAA 00° O Yoo
1071 4 0° ° Yoo _
wry = ([La, Uil = (7a)iUit) - Y101
[L3, U]

" o © ® mean deviation weighted by barycentric cell
M 5000 @ volume v(i) = 3 ;e Vol(C) /4

. rLU = ZU(MWLU(ZH
0© i

- rep =y o(i)lwrr (i)

N :

100 4

TLL
%g
3
o
o
o
o

10-14
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141D SU(2) with fermions

® Hamiltonian

2
=YD (~1)%050 6 + ZZ[MU;”ﬁHc] T L)

13/16



Introduction Discretised L Discretised L2
000 (e]e)

141D SU(2) with fermions

® Hamiltonian

2
=YD (~1)%050 6 + ZZ[MU;”ﬁHc] T L)

® Gauss's law

1
G = Ly — Ry — S6kr"0a

the physical states are the one G* |¢)) =0

Results
0000e000
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141D SU(2) with fermions

® Hamiltonian
2
ﬁ:MZZ( 1" 5T, + ZZ[QSCTUCC c+1+HC}+%ZL2($)

® Gauss's law 1
G = L4~ RS~ 6L 0s
the physical states are the one G* |¢)) =0

® To ensure that the low spectrum of H satisfy the Gauss's law we add a penalty term in the

Hamiltonian
HPenalty =k Z GQ(:E)
x

13/16
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Spectrum H

¥ 1071 4 < T
10° 4 * .
* +
[T I A w024 +"
4+ o+
N 6x 10710 T ¥y
w04 T . %x%gji R :
+ + o+ + — 16 +
)\2 2 x 10 +
1014 4 o, —~ N
’-<.Q 1012 1 asu T T B - T T T
PRI o o, o+
| . T + .
10 R ' ® For N large enough the exact result is
=] 3 N
< : : il [ 10 ety , recovered
— ¥ ~ ¥
1072 4 L 107" 4 Lt ® For finite IV also the Gauss's law operator G*
+ + . . .
103 Lt A4 10-3 Last? has discretization effects
] s T
Lt 1071 4 +
R
1071.'“,,+ )\5 10,2_"'”. +
10-2 10-2 101 109 10-2 101

—1 —1
Ni=020, 1/¢> = 2.00, v

x = 10.00, 2 sites
14/16



Results
00000000

Summary

® For a given subset of SU(2) we construct the canonical momentum operator L and L? in the base
where the links U are diagonal

® For the number of point in the SU(2) partition N — oo:

® the commutation relations [L;, L;] and [L;, U] are fulfilled
® The continuum spectrum is recovered in the free and interacting theory

e Construction generalizable to SU(N)
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Outlook

Investigation on 1 + 2D (ideally 14 3D)

Investigate the effects of breaking the commutation relation for finite NV

Compare the cost with other approaches

A different construction of L and L? still based on a discrete set of SU(2) will be presented in the
following talk S. Romiti, "Simulating the lattice SU(2) Hamiltonian with discrete manifold"
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Outlook

Investigation on 1 + 2D (ideally 14 3D)

Investigate the effects of breaking the commutation relation for finite NV

Compare the cost with other approaches

A different construction of L and L? still based on a discrete set of SU(2) will be presented in the
following talk S. Romiti, "Simulating the lattice SU(2) Hamiltonian with discrete manifold"

Thank you for your attention
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