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Main Takeaways

Main takeaway 1: QETU can be used to apply a general class of matrix functions to a state
using the time evolution input model

Main takeaway 2: QETU can be used to prepare the ground state of lattice gauge theories

Main takeaway bonus: QETU can be used to prepare wavepackets with cost linear in number
of qubits
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Building f (H)

Hamiltonian input model: assume access to circuit that implements block encoding of H

UH =

(
H ∗
∗ ∗

)
→
(
H ∗
∗ ∗

)(
|ψ〉
0

)
=

(
H |ψ〉
∗

)
Repeated calls to UH → implement f (H) |ψ〉

Optimal scaling w.r.t. number of calls to UH

Difficult to prepare UH , need arithmetic or QRAM → large prefactor in overall scaling

Time evolution input model: assume access to circuit that implements e−iH

Repeated calls to e−iH → implement f (H) |ψ〉
Optimal scaling w.r.t. number of calls to e−iH (if exact implementation)

In practice, one prepares e−iH approximately → less costly than implementing UH
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Quantum Eigenvalue Transformation for Unitary Matrices (QETU)

If U = e−iH ,

. . . = 0

. . . F (cos(H/2))|ψ〉
||F (cos(H/2))|ψ〉||

|0〉 e iφ0X e iφ1X e iφN−2X e iφN−1X

|ψ〉 U U† U U†

Measure zero with success probability

Prob(measure zero) = ||F (cos(H/2)) |ψ〉 ||2

Function F (x) can be arbitrary linear combination of Chebyshev polynomials∗ up to
degree 2(N − 1)

Can prepare U approximately, i.e. using product formulas (not “nearly optimal” anymore,
but interesting to explore)

∗subject to some broad constraints
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Flow of using QETU

To apply some matrix function f (H) to a state:

1 Find Chebyshev approximation to the scalar function F (x) = f (2 arccos(x))

2 Solve for phases ~φ using known efficient classical algorithm

3 Implement QETU circuit

4 Measure control qubit
if measure 0, continue
if measure 1, restart

. . .

. . .

|0〉 e iφ0X e iφ1X e iφN−2X e iφN−1X

|ψ〉 U U† U U†
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QETU for ground state preparation
Build approximate projector onto ground state: P<µ = |ψ0〉 〈ψ0|

Assume knowledge of ground state
energy E0 and energy gap ∆

Start with initial guess that has
overlap γ with ground state

|ψinit〉 = γ |ψ0〉+
∞∑
n=1

cn |ψn〉

After projection

P<µ |ψinit〉 = γ |ψ0〉

Approximate projector using shifted
error function
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Asymptotic scaling for ground state prepatation with QETU

Number of calls to e−iH circuit = O
(

1

γ2

1

∆QETU
log

1

ε

)

Precision ε: Chebyshev approximation of shifted error function converges exponentially in
degree of polynomial

Energy gap ∆QETU: Require more Chebyshev polynomials to approximate steeper error
function to same precision

→ Caveat: Spectrum of H must be in range [0, π], scaling H to do this also scales ∆
→ Max energy generally grows linearly with volume =⇒ ∆QETU ∝ 1/Volume

Overlap γ2: Overlap of initial guess |ψi 〉 with exact ground state |ψ0〉, γ = |〈ψi |ψ0〉|

If |ψi 〉 = γ |ψ0〉+
∑

n=1 cn |ψn〉, =⇒ Prob(measure zero) = γ2
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Test Theory: U(1) lattice gauge theory

H = HE + HB

Developed methods for efficient implementation of e−iHt

using Suzuki-Trotter methods in

D. Grabowska, CFK, B. Nachman, C.Bauer, arXiv:2208.03333

CFK, D. Grabowska, B. Nachman, C.Bauer, arXiv:2211.10497

Suzuki-Trotter:

U(t) =
(
FT†e−iδtHE FTe−iδtHB

)Nsteps
+O(δt)

δt ≡ t/Nsteps

diagonal matrix diagonal matrix

|ψ(0)〉 e−iδtHB FT e−iδtHE FT† |ψ(δt)〉
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Exact Implementation of U = e−i(HE+HB)

2× 2 lattice

Two qubits per site

See exponential
convergence to exact
ground state
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calls to e iH
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100
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Trotter implementation of e−i(HE+HB)

e−i(HE+HB) ≈ UTrotter ≡
(

FT†e−iδtHE FTe−iδtHB

)Nsteps

, δt ≡ 1/Nsteps (1)
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Wavepacket construction with QETU

In 1d quantum mechanics, want to construct state ψ(x) ∼ e−
1
2
x2/σ2

in position basis

e−i x̂ → e−
1
2
x̂2/σ2 →

∑
i

e−
1
2
x2i /σ

2 |i〉

Circuit for e−i x̂ with nq qubits requires O(nq) rotation gates and zero CNOT gates

QETU procedure:

1 Initialize state as |ψinit〉 = 1√
2nq

∑2nq−1
i=0 |i〉

2 Use QETU to prepare operator function f (x̂) = e−
1
2
x̂2/σ2

. . . = 0

. . . 1
N
∑

i e
− 1

2 x
2
i /σ

2 |i〉

|0〉 e iφ0σx e iφ1σx e iφN−2σx e iφN−1σx

|ψinit〉 e−i x̂ e i x̂ e−i x̂ e i x̂
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Wavepacket construction gate count comparison

Compare gate count between:

Exact state preparation
→ O(2nq) CNOT and Rz gates

QETU
→ O(nq) CNOT and Rz gates
→ gate count not scaled by γ−2

→ 1/γ2 ∼ 7 for all values of nq

2 3 4 5 6 7 8

100

101

102

103

exact state prep
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Control free QETU (Hamiltonian dependent procedure)

If U = e−iH ,

. . . = 0

. . . F (cos(H/2))|ψ〉
||F (cos(H/2))|ψ〉||

|0〉 e iφ0X e iφ1X e iφN−2X e iφN−1X

|ψ〉 U U† U U†

If V =

(
e iH/2 0

0 e−iH/2

)
,

. . . = 0

. . . F (cos(H/2))|ψ〉
||F (cos(H/2))|ψ〉||

|0〉 e iφ0X

V
e iφ1X

V †
e iφN−2X

V
e iφN−1X

V †|ψ〉

For this U(1) model, can implement V with same number of gates as U and

zero extra rotation gates

O(Volume) extra CNOT gates
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Scaling spectrum of H

Spectrum of H in range [0, π] to guarantee isolation of ground state

→ due to periodicity of argument of F (cos(x/2))

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F(
co

s(
x/

2)
)

E0 E1

E0 + 3

E1 + 3

continues 

Scale H to achieve this∗

Hscaled = H/α such that ||Hscaled|| ≤ π

This also scales the energy gap ∆→ ∆/α
→ max eigenvalue grows with volume
→ gap for QETU shrinks with volume

∗assuming spectrum postive, must also shift if not
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