State preparation in quantum simulations of lattice gauge theories

Speaker: Christopher Kane ${ }^{1}$
Collaborators: Christian Bauer², Niladri Gomes², Michael Kreshchuk ${ }^{2}$

Lattice 2023
Date: July 31, 2023
${ }^{1}$ University of Arizona
${ }^{2}$ Lawrence Berkeley National Lab

Main Takeaways

Main takeaway 1: QETU can be used to apply a general class of matrix functions to a state using the time evolution input model

Main takeaway 2: QETU can be used to prepare the ground state of lattice gauge theories

Main takeaway bonus: QETU can be used to prepare wavepackets with cost linear in number of qubits

Building $f(H)$

Hamiltonian input model: assume access to circuit that implements block encoding of H

$$
U_{H}=\left(\begin{array}{cc}
H & * \\
* & *
\end{array}\right) \rightarrow\left(\begin{array}{cc}
H & * \\
* & *
\end{array}\right)\binom{|\psi\rangle}{ 0}=\binom{H|\psi\rangle}{ *}
$$

Repeated calls to $U_{H} \rightarrow$ implement $f(H)|\psi\rangle$

- Optimal scaling w.r.t. number of calls to U_{H}
- Difficult to prepare U_{H}, need arithmetic or QRAM \rightarrow large prefactor in overall scaling

Building $f(H)$

Hamiltonian input model: assume access to circuit that implements block encoding of H

$$
U_{H}=\left(\begin{array}{cc}
H & * \\
* & *
\end{array}\right) \rightarrow\left(\begin{array}{cc}
H & * \\
* & *
\end{array}\right)\binom{|\psi\rangle}{ 0}=\binom{H|\psi\rangle}{ *}
$$

Repeated calls to $U_{H} \rightarrow$ implement $f(H)|\psi\rangle$

- Optimal scaling w.r.t. number of calls to U_{H}
- Difficult to prepare U_{H}, need arithmetic or QRAM \rightarrow large prefactor in overall scaling

Time evolution input model: assume access to circuit that implements $e^{-i H}$
Repeated calls to $e^{-i H} \rightarrow$ implement $f(H)|\psi\rangle$

- Optimal scaling w.r.t. number of calls to $e^{-i H}$ (if exact implementation)
- In practice, one prepares $e^{-i H}$ approximately \rightarrow less costly than implementing U_{H}

Quantum Eigenvalue Transformation for Unitary Matrices (QETU)

If $U=e^{-i H}$,

Measure zero with success probability

$$
\operatorname{Prob}(\text { measure zero })=\| F(\cos (H / 2))|\psi\rangle \|^{2}
$$

Quantum Eigenvalue Transformation for Unitary Matrices (QETU)

If $U=e^{-i H}$,

Measure zero with success probability

$$
\operatorname{Prob}(\text { measure zero })=\| F(\cos (H / 2))|\psi\rangle \|^{2}
$$

- Function $F(x)$ can be arbitrary linear combination of Chebyshev polynomials* up to degree $2(N-1)$
- Can prepare U approximately, i.e. using product formulas (not "nearly optimal" anymore, but interesting to explore)

[^0]
Flow of using QETU

To apply some matrix function $f(H)$ to a state:
1 Find Chebyshev approximation to the scalar function $F(x)=f(2 \arccos (x))$
2 Solve for phases $\vec{\phi}$ using known efficient classical algorithm
3 Implement QETU circuit
4 Measure control qubit

- if measure 0 , continue
- if measure 1 , restart

QETU for ground state preparation

Build approximate projector onto ground state: $P_{<\mu}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$

- Assume knowledge of ground state energy E_{0} and energy gap Δ

QETU for ground state preparation

Build approximate projector onto ground state: $P_{<\mu}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$

- Assume knowledge of ground state energy E_{0} and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$
\left|\psi_{\text {init }}\right\rangle=\gamma\left|\psi_{0}\right\rangle+\sum_{n=1}^{\infty} c_{n}\left|\psi_{n}\right\rangle
$$

QETU for ground state preparation

Build approximate projector onto ground state: $P_{<\mu}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$

- Assume knowledge of ground state energy E_{0} and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$
\left|\psi_{\text {init }}\right\rangle=\gamma\left|\psi_{0}\right\rangle+\sum_{n=1}^{\infty} c_{n}\left|\psi_{n}\right\rangle
$$

QETU for ground state preparation

Build approximate projector onto ground state: $P_{<\mu}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$

- Assume knowledge of ground state energy E_{0} and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$
\left|\psi_{\text {init }}\right\rangle=\gamma\left|\psi_{0}\right\rangle+\sum_{n=1}^{\infty} c_{n}\left|\psi_{n}\right\rangle
$$

- After projection

$$
P_{<\mu}\left|\psi_{\text {init }}\right\rangle=\gamma\left|\psi_{0}\right\rangle
$$

QETU for ground state preparation

Build approximate projector onto ground state: $P_{<\mu}=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$

- Assume knowledge of ground state energy E_{0} and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$
\left|\psi_{\text {init }}\right\rangle=\gamma\left|\psi_{0}\right\rangle+\sum_{n=1}^{\infty} c_{n}\left|\psi_{n}\right\rangle
$$

- After projection

$$
P_{<\mu}\left|\psi_{\text {init }}\right\rangle=\gamma\left|\psi_{0}\right\rangle
$$

- Approximate projector using shifted
 error function

Asymptotic scaling for ground state prepatation with QETU

$$
\text { Number of calls to } e^{-i H} \text { circuit }=\mathcal{O}(
$$

Asymptotic scaling for ground state prepatation with QETU

$$
\text { Number of calls to } e^{-i H} \text { circuit }=\mathcal{O}\left(\quad \log \frac{1}{\epsilon}\right)
$$

- Precision ϵ : Chebyshev approximation of shifted error function converges exponentially in degree of polynomial

Asymptotic scaling for ground state prepatation with QETU

$$
\text { Number of calls to } e^{-i H} \text { circuit }=\mathcal{O}\left(\frac{1}{\Delta_{\text {QETU }}} \log \frac{1}{\epsilon}\right)
$$

- Precision ϵ : Chebyshev approximation of shifted error function converges exponentially in degree of polynomial
- Energy gap $\Delta_{\text {QETU }}$: Require more Chebyshev polynomials to approximate steeper error function to same precision

Asymptotic scaling for ground state prepatation with QETU

$$
\text { Number of calls to } e^{-i H} \text { circuit }=\mathcal{O}\left(\frac{1}{\Delta_{\text {QETU }}} \log \frac{1}{\epsilon}\right)
$$

- Precision ϵ : Chebyshev approximation of shifted error function converges exponentially in degree of polynomial
- Energy gap $\Delta_{\text {QETU }}$: Require more Chebyshev polynomials to approximate steeper error function to same precision
\rightarrow Caveat: Spectrum of H must be in range $[0, \pi]$, scaling H to do this also scales Δ
\rightarrow Max energy generally grows linearly with volume $\Longrightarrow \Delta_{\text {QETU }} \propto 1 /$ Volume

Asymptotic scaling for ground state prepatation with QETU

$$
\text { Number of calls to } e^{-i H} \text { circuit }=\mathcal{O}\left(\frac{1}{\gamma^{2}} \frac{1}{\Delta_{\text {QETU }}} \log \frac{1}{\epsilon}\right)
$$

- Precision ϵ : Chebyshev approximation of shifted error function converges exponentially in degree of polynomial
- Energy gap $\Delta_{\text {QETU }}$: Require more Chebyshev polynomials to approximate steeper error function to same precision
\rightarrow Caveat: Spectrum of H must be in range $[0, \pi]$, scaling H to do this also scales Δ \rightarrow Max energy generally grows linearly with volume $\Longrightarrow \Delta_{\text {QETU }} \propto 1 /$ Volume
- Overlap γ^{2} : Overlap of initial guess $\left|\psi_{i}\right\rangle$ with exact ground state $\left|\psi_{0}\right\rangle, \gamma=\left|\left\langle\psi_{i} \mid \psi_{0}\right\rangle\right|$

$$
\text { If }\left|\psi_{i}\right\rangle=\gamma\left|\psi_{0}\right\rangle+\sum_{n=1} c_{n}\left|\psi_{n}\right\rangle, \quad \Longrightarrow \quad \operatorname{Prob}(\text { measure zero })=\gamma^{2}
$$

Test Theory: U(1) lattice gauge theory

$$
H=H_{E}+H_{B}
$$

Dual Basis

Developed methods for efficient implementation of $e^{-i H t}$ using Suzuki-Trotter methods in

- D. Grabowska, CFK, B. Nachman, C.Bauer, arXiv:2208.03333
- CFK, D. Grabowska, B. Nachman, C.Bauer, arXiv:2211.10497

Suzuki-Trotter:

$$
\begin{gathered}
U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t) \\
\delta t \equiv t / N_{\text {steps }}
\end{gathered}
$$

diagonal matrix diagonal matrix

Exact Implementation of $U=e^{-i\left(H_{E}+H_{B}\right)}$

$$
1-\left|\left\langle\psi_{\text {prepared }} \mid \psi_{0}\right\rangle\right|
$$

- 2×2 lattice
- Two qubits per site
- See exponential convergence to exact ground state

Trotter implementation of $e^{-i\left(H_{E}+H_{B}\right)}$

$$
\begin{equation*}
e^{-i\left(H_{E}+H_{B}\right)} \approx U_{\text {Trotter }} \equiv\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}, \quad \delta t \equiv 1 / N_{\text {steps }} \tag{1}
\end{equation*}
$$

Trotter implementation of $e^{-i\left(H_{E}+H_{B}\right)}$

$$
\begin{equation*}
e^{-i\left(H_{E}+H_{B}\right)} \approx U_{\text {Trotter }} \equiv\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}, \quad \delta t \equiv 1 / N_{\text {steps }} \tag{1}
\end{equation*}
$$

Trotter implementation of $e^{-i\left(H_{E}+H_{B}\right)}$

$$
\begin{equation*}
e^{-i\left(H_{E}+H_{B}\right)} \approx U_{\text {Trotter }} \equiv\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}, \quad \delta t \equiv 1 / N_{\text {steps }} \tag{1}
\end{equation*}
$$

Wavepacket construction with QETU

In 1 d quantum mechanics, want to construct state $\psi(x) \sim e^{-\frac{1}{2} x^{2} / \sigma^{2}}$ in position basis

$$
e^{-i \hat{x}} \rightarrow e^{-\frac{1}{2} \hat{x}^{2} / \sigma^{2}} \rightarrow \sum_{i} e^{-\frac{1}{2} x_{i}^{2} / \sigma^{2}}|i\rangle
$$

Circuit for $e^{-i \hat{x}}$ with n_{q} qubits requires $\mathcal{O}\left(n_{q}\right)$ rotation gates and zero CNOT gates

Wavepacket construction with QETU

In 1d quantum mechanics, want to construct state $\psi(x) \sim e^{-\frac{1}{2} x^{2} / \sigma^{2}}$ in position basis

$$
e^{-i \hat{x}} \rightarrow e^{-\frac{1}{2} \hat{x}^{2} / \sigma^{2}} \rightarrow \sum_{i} e^{-\frac{1}{2} x_{i}^{2} / \sigma^{2}}|i\rangle
$$

Circuit for $e^{-i \hat{x}}$ with n_{q} qubits requires $\mathcal{O}\left(n_{q}\right)$ rotation gates and zero CNOT gates

QETU procedure:
1 Initialize state as $\left|\psi_{\text {init }}\right\rangle=\frac{1}{\sqrt{2^{n q}}} \sum_{i=0}^{2^{n q}-1}|i\rangle$
2 Use QETU to prepare operator function $f(\hat{x})=e^{-\frac{1}{2} \hat{x}^{2} / \sigma^{2}}$

Wavepacket construction gate count comparison

Compare gate count between:

- Exact state preparation
$\rightarrow \mathcal{O}\left(2^{n_{q}}\right)$ CNOT and R_{z} gates
CNOT count

Wavepacket construction gate count comparison

Compare gate count between:

- Exact state preparation
$\rightarrow \mathcal{O}\left(2^{n_{q}}\right)$ CNOT and R_{z} gates
- QETU
$\rightarrow \mathcal{O}\left(n_{q}\right)$ CNOT and R_{z} gates
\rightarrow gate count not scaled by γ^{-2}
$\rightarrow 1 / \gamma^{2} \sim 7$ for all values of n_{q}

CNOT count

Main Takeaways

Main takeaway 1: QETU can be used to apply a general class of matrix functions to a state using the time evolution input model

Main takeaway 2: QETU can be used to prepare the ground state of lattice gauge theories

Main takeaway bonus: QETU can be used to prepare wavepackets with cost linear in number of qubits

Backup Slides

Control free QETU (Hamiltonian dependent procedure)

$$
\text { If } U=e^{-i H}
$$

If $V=\left(\begin{array}{cc}e^{i H / 2} & 0 \\ 0 & e^{-i H / 2}\end{array}\right)$,

For this $U(1)$ model, can implement V with same number of gates as U and

- zero extra rotation gates
- \mathcal{O} (Volume) extra CNOT gates

Scaling spectrum of H

Spectrum of H in range $[0, \pi]$ to guarantee isolation of ground state
\rightarrow due to periodicity of argument of $F(\cos (x / 2))$

*assuming spectrum postive, must also shift if not
Scale H to achieve this*

- $H_{\text {scaled }}=H / \alpha$ such that $\left\|H_{\text {scaled }}\right\| \leq \pi$
- This also scales the energy gap $\Delta \rightarrow \Delta / \alpha$ \rightarrow max eigenvalue grows with volume \rightarrow gap for QETU shrinks with volume

[^0]: *subject to some broad constraints

