State preparation in quantum simulations of lattice gauge theories

Speaker: Christopher Kane¹

Collaborators: Christian Bauer², Niladri Gomes², Michael Kreshchuk²

Lattice 2023

Date: July 31, 2023

¹University of Arizona

²Lawrence Berkeley National Lab

Main takeaway 1: QETU can be used to apply a **general class of matrix functions** to a state using the **time evolution input model**

Main takeaway 2: QETU can be used to prepare the ground state of lattice gauge theories

Main takeaway bonus: QETU can be used to prepare wavepackets with cost linear in number of qubits

Building f(H)

Hamiltonian input model: assume access to circuit that implements block encoding of H

$$U_{H} = \begin{pmatrix} H & * \\ * & * \end{pmatrix} \rightarrow \begin{pmatrix} H & * \\ * & * \end{pmatrix} \begin{pmatrix} |\psi\rangle \\ 0 \end{pmatrix} = \begin{pmatrix} H |\psi\rangle \\ * \end{pmatrix}$$

Repeated calls to $U_H \rightarrow \text{implement } f(H) \ket{\psi}$

- Optimal scaling w.r.t. number of calls to U_H
- Difficult to prepare U_H , need arithmetic or QRAM \rightarrow large prefactor in overall scaling

Building f(H)

Hamiltonian input model: assume access to circuit that implements block encoding of H

$$U_{H} = \begin{pmatrix} H & * \\ * & * \end{pmatrix} \rightarrow \begin{pmatrix} H & * \\ * & * \end{pmatrix} \begin{pmatrix} |\psi\rangle \\ 0 \end{pmatrix} = \begin{pmatrix} H |\psi\rangle \\ * \end{pmatrix}$$

Repeated calls to $U_H \rightarrow \text{implement } f(H) \ket{\psi}$

- Optimal scaling w.r.t. number of calls to U_H
- Difficult to prepare U_H , need arithmetic or QRAM \rightarrow large prefactor in overall scaling

Time evolution input model: assume access to circuit that implements e^{-iH}

Repeated calls to $e^{-iH} \rightarrow \text{implement } f(H) \ket{\psi}$

- Optimal scaling w.r.t. number of calls to e^{-iH} (if exact implementation)
- In practice, one prepares e^{-iH} approximately ightarrow less costly than implementing U_H

Quantum Eigenvalue Transformation for Unitary Matrices (QETU)

If $U = e^{-iH}$,

Measure zero with success probability

 $\mathsf{Prob}(\mathsf{measure zero}) = ||F(\cos(H/2))|\psi\rangle ||^2$

Quantum Eigenvalue Transformation for Unitary Matrices (QETU)

If $U = e^{-iH}$,

Measure zero with success probability

 $\mathsf{Prob}(\mathsf{measure zero}) = ||F(\cos(H/2))|\psi\rangle ||^2$

- Function F(x) can be arbitrary linear combination of Chebyshev polynomials* up to degree 2(N - 1)
- Can prepare *U* approximately, i.e. using product formulas (not "nearly optimal" anymore, but interesting to explore)

*subject to some broad constraints

Flow of using QETU

To apply some matrix function f(H) to a state:

- 1 Find Chebyshev approximation to the scalar function $F(x) = f(2 \arccos(x))$
- 2 Solve for phases $ec{\phi}$ using known efficient classical algorithm
- 3 Implement QETU circuit
- 4 Measure control qubit
 - if measure 0, continue
 - if measure 1, restart

Build approximate projector onto ground state: $P_{<\mu} = \ket{\psi_0} ra{\psi_0}$

• Assume knowledge of ground state energy E_0 and energy gap Δ

Build approximate projector onto ground state: $P_{<\mu} = \ket{\psi_0} ra{\psi_0}$

- Assume knowledge of ground state energy E_0 and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$\left|\psi_{\mathrm{init}}
ight
angle = \gamma \left|\psi_{\mathrm{0}}
ight
angle + \sum_{n=1}^{\infty} c_{n} \left|\psi_{n}
ight
angle$$

Build approximate projector onto ground state: $P_{<\mu} = \ket{\psi_0} ra{\psi_0}$

- Assume knowledge of ground state energy E_0 and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$\left|\psi_{\mathrm{init}}
ight
angle = \gamma \left|\psi_{\mathrm{0}}
ight
angle + \sum_{n=1}^{\infty} c_{n} \left|\psi_{n}
ight
angle$$

Build approximate projector onto ground state: $P_{<\mu} = \ket{\psi_0} ra{\psi_0}$

- Assume knowledge of ground state energy E_0 and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$\ket{\psi_{\mathsf{init}}} = \gamma \ket{\psi_0} + \sum_{n=1}^{\infty} c_n \ket{\psi_n}$$

• After projection

$$P_{<\mu} \left| \psi_{\mathrm{init}}
ight
angle = \gamma \left| \psi_{\mathrm{0}}
ight
angle$$

Build approximate projector onto ground state: $P_{<\mu} = \ket{\psi_0} ra{\psi_0}$

- Assume knowledge of ground state energy E_0 and energy gap Δ
- Start with initial guess that has overlap γ with ground state

$$|\psi_{\text{init}}\rangle = \gamma |\psi_0\rangle + \sum_{n=1}^{\infty} c_n |\psi_n\rangle$$

• After projection

$$P_{<\mu} \ket{\psi_{ ext{init}}} = \gamma \ket{\psi_0}$$

• Approximate projector using shifted error function

Asymptotic scaling for ground state prepatation with QETU Number of calls to e^{-iH} circuit = $O\left(\log \frac{1}{\epsilon}\right)$

 Precision ε: Chebyshev approximation of shifted error function converges exponentially in degree of polynomial

Number of calls to
$$e^{-iH}$$
 circuit = $\mathcal{O}\left(-\frac{1}{\Delta_{\mathsf{QETU}}}\log\frac{1}{\epsilon}\right)$

- Precision ε: Chebyshev approximation of shifted error function converges exponentially in degree of polynomial
- Energy gap Δ_{QETU}: Require more Chebyshev polynomials to approximate steeper error function to same precision

Number of calls to
$$e^{-iH}$$
 circuit $= \mathcal{O}\left(-\frac{1}{\Delta_{\mathsf{QETU}}}\log \frac{1}{\epsilon} \right)$

- Precision ε: Chebyshev approximation of shifted error function converges exponentially in degree of polynomial
- Energy gap Δ_{QETU}: Require more Chebyshev polynomials to approximate steeper error function to same precision
 - \rightarrow Caveat: Spectrum of *H* must be in range [0, π], scaling *H* to do this also scales Δ \rightarrow Max energy generally grows linearly with volume $\implies \Delta_{QETU} \propto 1/Volume$

Number of calls to
$$e^{-iH}$$
 circuit $= \mathcal{O}\left(\frac{1}{\gamma^2} \frac{1}{\Delta_{\mathsf{QETU}}} \log \frac{1}{\epsilon}\right)$

- Precision ε: Chebyshev approximation of shifted error function converges exponentially in degree of polynomial
- Energy gap Δ_{QETU}: Require more Chebyshev polynomials to approximate steeper error function to same precision
 - \rightarrow Caveat: Spectrum of *H* must be in range [0, π], scaling *H* to do this also scales Δ \rightarrow Max energy generally grows linearly with volume $\implies \Delta_{QETU} \propto 1/Volume$

• Overlap γ^2 : Overlap of initial guess $|\psi_i\rangle$ with exact ground state $|\psi_0\rangle$, $\gamma = |\langle \psi_i | \psi_0 \rangle|$

If
$$|\psi_i\rangle = \gamma |\psi_0\rangle + \sum_{n=1} c_n |\psi_n\rangle$$
, \implies Prob(measure zero) = γ^2

Test Theory: U(1) lattice gauge theory

Developed methods for efficient implementation of e^{-iHt} using Suzuki-Trotter methods in

- D. Grabowska, CFK, B. Nachman, C.Bauer, arXiv:2208.03333
- CFK, D. Grabowska, B. Nachman, C.Bauer, arXiv:2211.10497

Suzuki-Trotter:

$$U(t) = \left(\mathsf{FT}^{\dagger} e^{-i\delta t H_E} \mathsf{FT} e^{-i\delta t H_B}
ight)^{N_{\mathrm{steps}}} + \mathcal{O}(\delta t)$$

 $\delta t \equiv t/N_{\mathrm{steps}}$

diagonal matrix diagonal matrix
$$|\psi(0)\rangle - e^{-i\delta t H_B} - FT - e^{-i\delta t H_E} - FT^{\dagger} - |\psi(\delta t)\rangle$$

Exact Implementation of $U = e^{-i(H_E + H_B)}$

- 2×2 lattice
- Two qubits per site
- See exponential convergence to exact ground state

Trotter implementation of $e^{-i(H_E+H_B)}$

$$e^{-i(H_E+H_B)} \approx U_{\text{Trotter}} \equiv \left(\mathsf{FT}^{\dagger} e^{-i\delta tH_E} \mathsf{FT} e^{-i\delta tH_B}\right)^{N_{\text{steps}}}, \quad \delta t \equiv 1/N_{\text{steps}}$$
(1)

Trotter implementation of $e^{-i(H_E+H_B)}$

$$e^{-i(H_E+H_B)} \approx U_{\text{Trotter}} \equiv \left(\mathsf{FT}^{\dagger} e^{-i\delta tH_E} \mathsf{FT} e^{-i\delta tH_B}\right)^{N_{\text{steps}}}, \quad \delta t \equiv 1/N_{\text{steps}}$$
(1)

Trotter implementation of $e^{-i(H_E+H_B)}$

$$e^{-i(H_E+H_B)} \approx U_{\text{Trotter}} \equiv \left(\mathsf{FT}^{\dagger}e^{-i\delta tH_E}\mathsf{FT}e^{-i\delta tH_B}\right)^{N_{\text{steps}}}, \quad \delta t \equiv 1/N_{\text{steps}}$$
(1)

Wavepacket construction with QETU

In 1d quantum mechanics, want to construct state $\psi(x) \sim e^{-rac{1}{2}x^2/\sigma^2}$ in position basis

$$e^{-i\hat{\chi}}
ightarrow e^{-rac{1}{2}\hat{\chi}^2/\sigma^2}
ightarrow \sum_i e^{-rac{1}{2}x_i^2/\sigma^2} \ket{i}$$

Circuit for $e^{-i\hat{\chi}}$ with n_q qubits requires $\mathcal{O}(n_q)$ rotation gates and zero CNOT gates

Wavepacket construction with QETU

In 1d quantum mechanics, want to construct state $\psi(x) \sim e^{-rac{1}{2}x^2/\sigma^2}$ in position basis

$$e^{-i\hat{\chi}}
ightarrow e^{-rac{1}{2}\hat{\chi}^2/\sigma^2}
ightarrow \sum_i e^{-rac{1}{2}x_i^2/\sigma^2} \ket{i}$$

Circuit for $e^{-i\hat{x}}$ with n_q qubits requires $\mathcal{O}(n_q)$ rotation gates and zero CNOT gates

QETU procedure:

$$1$$
 Initialize state as $\ket{\psi_{\mathsf{init}}} = rac{1}{\sqrt{2^{nq}}}\sum_{i=0}^{2^{nq}-1}\ket{i}$

2 Use QETU to prepare operator function $f(\hat{x}) = e^{-\frac{1}{2}\hat{x}^2/\sigma^2}$

Wavepacket construction gate count comparison

Wavepacket construction gate count comparison

Compare gate count between:

• Exact state preparation $\rightarrow \mathcal{O}(2^{n_q})$ CNOT and R_z gates

QETU

 $ightarrow \mathcal{O}(n_q)$ CNOT and R_z gates ightarrow gate count **not** scaled by γ^{-2} ightarrow 1/ $\gamma^2 \sim$ 7 for all values of n_q

Main takeaway 1: QETU can be used to apply a **general class of matrix functions** to a state using the **time evolution input model**

Main takeaway 2: QETU can be used to prepare the ground state of lattice gauge theories

Main takeaway bonus: QETU can be used to prepare wavepackets with cost linear in number of qubits

Backup Slides

Control free QETU (Hamiltonian dependent procedure)

For this U(1) model, can implement V with same number of gates as U and

- zero extra rotation gates
- $\mathcal{O}(Volume)$ extra CNOT gates

Scaling spectrum of H

Spectrum of H in range $[0, \pi]$ to guarantee isolation of ground state

 \rightarrow due to periodicity of argument of $F(\cos(x/2))$

Scale H to achieve this^{*}

- $\mathit{H}_{\mathrm{scaled}} = \mathit{H} / \alpha$ such that $||\mathit{H}_{\mathrm{scaled}}|| \leq \pi$
- This also scales the energy gap $\Delta \rightarrow \Delta/\alpha$ \rightarrow max eigenvalue grows with volume \rightarrow gap for QETU shrinks with volume

 * assuming spectrum postive, must also shift if not