Exploring Composite Dark matter with an SU(4) gauge theory with 1 fermion flavor

Venkitesh Ayyar August 3, 2023

Fermilab, IL, USA

Work in progress with the LSD collaboration

Lattice Strong Dynamics

Dark matter

Evidence

- Galaxy rotation curves
- Weak lensing
- CMB

Dark matter features:

A Interaction is weak: Gravitational

Abundance: $\Omega_{\text{Dark}} = 5 \times \Omega_{\text{SM}}$

Galaxy rotation curves point to missing dark matter

Fig. from wikipedia

Strongly coupled Composite Dark matter

New strong sector (dark color)

Dark fermions and gluons

Stable composite particles

Can be dark matter

g

Coupled via Electroweak to SM particles

New confinement and chiral transitions to explore

Potential gravitational wave signal

A new strong Dark sector SU(4)

 $SU(N_{c})$

Natural extension to SM

Composite Dark particles

The Challenge

Massive particles that can be detected by future experiments

No light particles that should've been seen by existing experiments

Explain new physics

Be consistent with observations

1 flavor models are interesting !

✤U_V(1) (Dark baryon number) symmetry is preserved

 $U_A(1)$ is broken by the anomaly

✤No chiral transition

No light mesons from chiral SB

Previous 1 flavor work

SU(3) 1 flavor : Morte, Jager, Sannino, Tsang, Ziegler Phys. Rev. D 107 (2023), 114506

SU(2) 1 flavor : Francis, Hudspith, Lewis, Tulin JHEP 12 (2018) 118

The model: SU(4) gauge theory with 1 flavor

Stable baryon

Protected from decay by $U_V(1)$

SU(4) 1 flavor emerges from Hyper stealth Dark matter (HSDM) model

HSDM¹

SU(4) gauge theory: 4 flavors of fundamental Dirac fermions

 \bullet Two couple to SU(2) and U(1) ✤ Two couple only to U(1)

✤ Mass from:

Vector mass terms

Yukawa couplings to Higgs

Can tweak to get a mass hierarchy

¹In preparation : Fleming, Kribs, Neil, Schaich and Vranas

Lightest baryon is charge neutral

Similar to a QCD with neutron lightest

Lattice simulation goals

► /

Step 1: Thermodynamics

Explore phase diagram at finite T

Identify confinement transition

Is it first order ?

M_{f}

Observables:

Plaquette

Polyakov loop

Susceptibilities

 $\chi_{\mathcal{O}} = L^3 \left| \langle \mathcal{O}^2 \rangle - \left(\langle \mathcal{O} \rangle \right)^2 \right|$

Step 2: Find the spectrum

Challenges:

Lightest meson η' has disconnected diagrams Baryon is 4-quark state

Simulation details

Wilson gauge action

Mobius domain-wall fermions

Lattice sizes : $16^3 \times 8$, $24^3 \times 8$, $24^3 \times 12$

Mass : 0.1

Domain-wall L5=16

~ 350 - 1300 MDTUs (molecular dynamics time units) per run 8 GPUs per run

Gauge config generation

https://github.com/paboyle/Grid

Measurements

https://github.com/aportelli/Hadrons

Runs on Tioga AMD GPU machine at Livermore Lab

Thank you Antonin and Peter for help!

Results: Plaquette shows location of a bulk transition

Preliminary results

Plaquette : bulk transition $\beta \sim 10.3$

Results: Comparing Hot and Cold starts

Preliminary results

Polyakov loop : Confinement transition $\beta \in (11.0, 12.0)$

Results: Confinement transition from the Polyakov loop

Preliminary results

BOSTON

UNIVERSITY

Transition shifts to larger β with increasing N_t

Results from HotStart

Need more configs near the transition

Polyakov loop is noisy

 Calculate masses of lightest stable baryon and meson

Next steps

Wilson flowed observables to map transition

Challenging: η' has disconnected contributions

Perhaps use Wilson fermions with **RHMC**

Summary

Hyper-stealth Dark matter : SU(4)

Studying thermodynamics of SU(4) 1 flavor

Found the region of the transition

Future direction

 Calculate masses of lightest stable baryon and meson

✦ Scattering

Thank you

	i	
Argonne	Xiao-Yong Jin,	
Bern	Andrew Gasba	
Boston	Richard Browe	
University	Claudio Rebbi	
CU Boulder	Ethan Neil, Anr Curtis Petersor	
Fermilab	George Fleming	
Livermore	Pavlos Vranas	
Liverpool	David Schaich,	
Nvidia	Evan Weinberg	
Oregon	Graham Kribs	
RIKEN	Enrico Rinaldi	
Siegen	Oliver Witzel	
Trieste	James Ingoldb	
Yale	Thomas Appelo	
	Cushman	

James Osborn			
rro			
r, VA, Evan Owen,			
าa Hasenfratz, า			
g			
, Chris Culver			
У			
quist, Kimmy			

Computing resources:

LLNL machines Lassen and Tioga

Backup slides

Hyper-stealth dark matter (HSDM)

Fermion kinetic terms

$$\mathcal{L} \supset \sum i F_i^{\dagger} \bar{\sigma}^{\mu} D_{i,\mu} F_i + \sum_{i=3,4; j=u,d} i F_i^{j,\dagger} \bar{\sigma}^{\mu} D_{i,\mu}^j F_i^j$$

Covariant derivatives

$$\begin{split} D_{1,\mu} &= \partial_{\mu} - ig'Y_{1}B_{\mu} - igW_{\mu}^{a}\frac{\sigma^{a}}{2} - ig_{D}G_{\mu}^{b}t^{b} \\ D_{2,\mu} &= \partial_{\mu} - ig'Y_{2}B_{\mu} - igW_{\mu}^{a}\frac{\sigma^{a}}{2} + ig_{D}G_{\mu}^{b}t^{b*} \\ D_{3,\mu}^{j} &= \partial_{\mu} - ig'Y_{3}B_{\mu} - ig_{D}G_{\mu}^{b}t^{b} \\ D_{4,\mu}^{j} &= \partial_{\mu} - ig'Y_{4}B_{\mu} + ig_{D}G_{\mu}^{b}t^{b*} \end{split}$$

Flavor charge assignments

Field	$SU(N_D)$	$(SU(2)_L, Y)$	T_3	\mathbf{Q}
F_1^u	Ν	(2 , -1/2)	+1/2	0
F_1^d	\mathbf{N}	(2 , -1/2)	-1/2	-1
F_2^u	$\overline{\mathbf{N}}$	(2 , +1/2)	+1/2	+1
F_2^d	$\overline{\mathbf{N}}$	(2 , +1/2)	-1/2	0
F_3^u	Ν	(1, 0)	0	0
F_3^d	\mathbf{N}	(1, -1)	0	-1
F_4^u	$\overline{\mathbf{N}}$	(1, +1)	0	+1
F_4^d	$\overline{\mathbf{N}}$	(1, 0)	0	0

 $Q = T_3 + Y$

Vector-like mass terms

$\mathscr{L} \supset M_{12} \epsilon_{ij} F_1^i F_2^j - M_{34}^u F_3^u F_4^d + M_{34}^d F_3^d F_4^d + h.c.$

Yukawa masses after EWK symmetry breaking

$$\mathscr{L} \supset \frac{v}{\sqrt{2}} \left(-y_{14}^u F_1^u F_4^d + y_{14}^d F_1^d F_4^u + y_{23}^d F_2^u F_3^d \right)$$

Mass eigenbasis

 $\mathscr{L} \supset - \left[M_1^u \ \overline{\Psi}_1^u \Psi_1^u + M_2^u \ \overline{\Psi}_2^u \Psi_2^u + M_1^d \ \overline{\Psi}_1^d \Psi_1^d + M_2^d \ \overline{\Psi}_2^d \Psi_2^d \right]$

Mass terms : Vector and Yukawa

$-y_{23}^{u}F_{2}^{d}F_{3}^{u}+h.c.$

Q=0 M_1^u, M_1^d, M_2^d 10^{3} M^{u}_{2} Q=0

SDM and HSDM comparison

2 flavors have SU(2) charges 2 flavors have hypercharge

Light charged dark pions exist

Dark baryons scale ~ TeV

¹PHYSICAL REVIEW D 92, 075030 (2015) ²PHYSICAL REVIEW LETTERS PRL 115, 171803 (2015) ³PHYSICAL REVIEW D 103, 014505 (2021)

This talk

0

-1

0

HSDM

2 flavors have SU(2) and hypercharge 2 flavors have hypercharge

Dark baryons scale ~ few GeV

Want to find the order of confinement transition for SU(4)

Conjectured Columbia plot for SU(N) gauge theory

¹PHYSICAL REVIEW D 103, 014505 (2021), LSD collaboration ²PHYSICAL REVIEW D 97, 114502 (2018), TaCo collaboration

Number of flavors	Order of confinement transition
Pure gauge ¹	1 st order
1 flavor	?
2 flavors ²	cross-over
4 flavors ¹	cross-over for low masses

Potential Gravitational wave signal !

