Lattice calculation of electromagnetic corrections to *Kl*3 decay

The 40th International Symposium on Lattice Field Theory

Fermilab

August 4, 2023

N.H. Christ, X. Feng, L. Jin C.T. Sachrajda and T. Wang

RBC and UKQCD Collaborations

Outline

- Combining QCD and electromagnetism
- Difficulties of determining E&M effects in $K \rightarrow \pi \ell \overline{v}_{\ell}$ decays
- Ideal application for infinite-volume reconstruction
- Overview of the solution

The RBC & UKQCD collaborations

<u>University of Bern & Lund</u> Dan Hoying

BNL and BNL/RBRC

Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Raza Sufian Tianle Wang

<u>CERN</u>

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Luchang Jin (RBRC)

Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Maxwell T. Hansen Tim Harris Ryan Hill **Raoul Hodgson** Nelson Lachini Zi Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli **James Richings** Azusa Yamaguchi Andrew Z.N. Yong

<u>Liverpool Hope/Uni. of Liverpool</u> Nicolas Garron

<u>LLNL</u> Aaron Meyer

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

<u>Peking University</u> Xu Feng

University of Regensburg

Davide Giusti Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

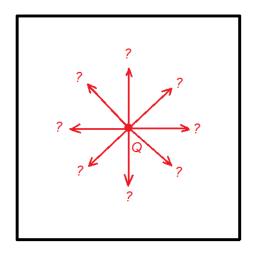
Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

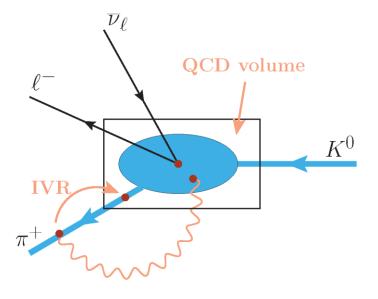
University of Southampton

Alessandro Barone Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Nikolai Husung Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda


Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC) Lattice 2023 - Fermilab

(3)

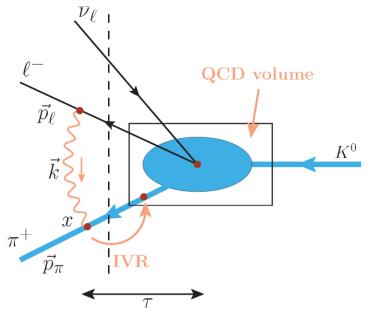

Combining lattice QCD and E&M

- Natural to add QED as a second lattice gauge theory SU(3)_{QCD} → SU(3)_{QCD} x U(1)_{QED}
- Difficulties:
 - − On a torus, Gauss' law \rightarrow $Q_{tot} = 0$
 - Solved with QED_L (Hayakawa and Uno, (2008)
 <u>0804.2044</u> [hep-ph])
 - Dropping $\vec{k} = 0$ mode adds $c_0 + c_1 r^2$ to Coulomb force – alters force at short-distance. (Davoudi, et al, <u>1810.05923</u> [hep-lat])
 - Introduces 1/Lⁿ errors which must be controlled.

Improved strategy

 Treat QED degrees of freedom analytically allowing infinite volume: QED_∞

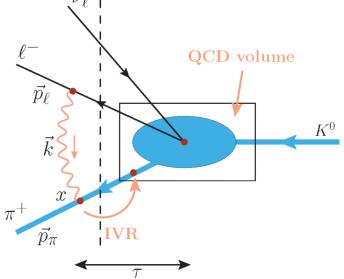
- An effective strategy:
 - 1. Work in infinite Minkowski volume, include QED analytically
 - 2. Treat exponentially localized QCD portion in a finite subvolume, Wick rotate QCD position-space amplitude.
 - 3. Use *infinite volume reconstruction* to treat long-distance single-particle propagation (X. Feng and L. Jin, <u>1812.09817</u> [hep-lat])
 - 4. Compute analytic parts in Minkowski space: obtain complex amplitudes from lattice QCD


Status of QED corrections to (semi-)leptonic meson decay

- $\underline{K^{-}} \rightarrow \ell^{-} \overline{V_{\ell}}$:
 - 1st Method and calculation by Rome123 using QED_L (N.Carrasco, *et al.*, <u>1502.00257</u> [hep-lat]).
 - 2nd Calculation indicating possibly large finitevolume corrections (P. Boyle, *et al.*, <u>2211.12865</u> [heplat])
 - 3rd Detailed method using QED_∞ (N. Christ, *et al.,* 2304.08026 [hep-lat])
 - All finite-volume errors ~ $e^{-m_{\pi}L/2}$
 - No infrared singularities in lattice calculation
- $\underline{K^0} \rightarrow \pi^+ \ell^- \overline{\nu_\ell}$:
 - Method proposed in 2304.08026 [hep-lat], Appendix C
 - First ab-initio lattice formulation
 - Subject of this talk

Two Challenges

Both issues associated with photon exchange between π^+ and ℓ^- :

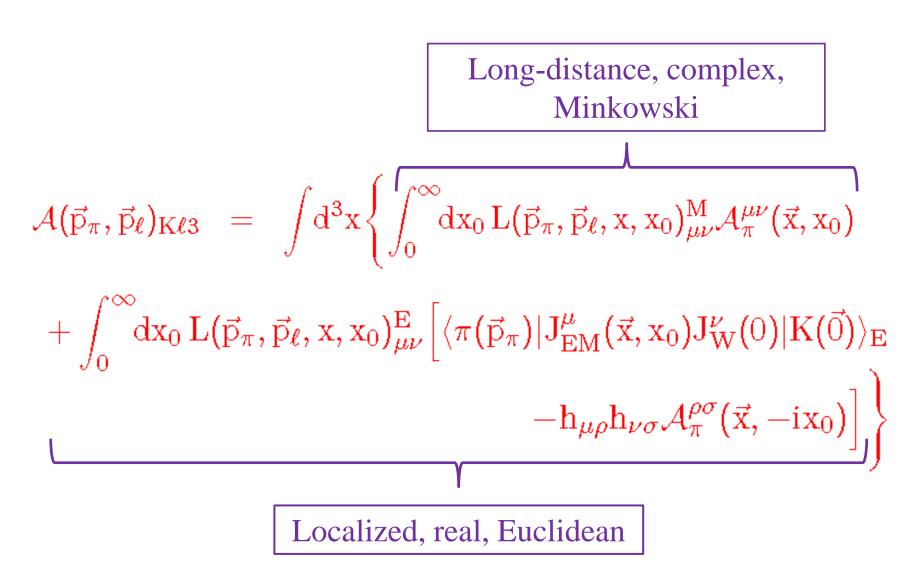

1. $\pi^+\ell^-$ intermediate states with energies $E_{\pi\ell} < M_K - E_v$ implies exponential relative growth $\sim e^{(M_K - E_{\pi\ell} - E_v)\tau}$

 On-shell π⁺ℓ⁻ intermediate state produces an imaginary part and the principal part of a singular integral with potentially large finite-volume corrections

The Solution

- Heart of problem is contributions from $x_0 >> 0$
- The solution lies in using more Euclidean information

- All difficulties come when $x_0 > 0$ from the amplitude: $\mathcal{A}^{\mu\nu}_{\pi}(\vec{p}_{\pi}; \vec{x}, x_0) = \langle \pi(\vec{p}_{\pi}) | J^{\mu}_{EM}(\vec{x}, x_0) \left[\int d^3p |\pi(\vec{p})\rangle \langle \pi(\vec{p}) | \right] J^{\nu}_{W}(0) | K(\vec{0}) \rangle$
- <u>If removed:</u> can be Wick rotated and resulting Euclidean amplitude is localized accessible to lattice QCD
- If known: can be used to calculate Minkowski $\pi^+ \ell^-$ final state scattering, both imaginary and principal parts
- Complete *Kl* 3 E&M correction would be determined!


Infinite volume reconstruction (IVR)

 IVR allows us to calculate this infinite-volume, pion contribution in Minkowski space from lattice QCD with exponentially small finite-volume corrections

$$\begin{split} \langle \pi(\vec{p}_{\pi}) | J_{EM}^{\mu}(\vec{x}, x_{0}) \bigg[\int \! d^{3}p |\pi(\vec{p})\rangle \langle \pi(\vec{p}) | \bigg] J_{W}^{\nu}(0) | K(\vec{0}) \rangle_{M} \\ &= \int \! d^{3}p \, e^{-i(x_{0}+it_{s})(E_{\vec{p}}-E_{\pi})} \\ \langle \pi(\vec{p}_{\pi}) | J_{EM}^{\mu}(\vec{x},-it_{s}) | \pi(\vec{p}) \rangle \langle \pi(\vec{p}) | J_{W}^{\nu}(0) | K(\vec{0}) \rangle_{M} \end{split}$$

$$= \int \! \mathrm{d}^3 p \, \mathrm{e}^{-\mathrm{i}(\mathbf{x}_0 + \mathrm{i} \mathbf{t}_{\mathrm{s}})(\mathrm{E}_{\vec{p}} - \mathrm{E}_{\pi})} \int \! \frac{\mathrm{d}^3 y}{(2\pi)^3} \mathrm{e}^{\mathrm{i}(\vec{p} - \vec{p}_{\pi})(\vec{x} - \vec{y})} \\ \mathrm{h}^{\mu\rho} \mathrm{h}^{\nu\sigma} \langle \pi(\vec{p}_{\pi}) | \mathrm{J}^{\rho}_{\mathrm{EM}}(\vec{y}, \mathbf{t}_{\mathrm{s}}) \mathrm{J}^{\sigma}_{\mathrm{W}}(0) | \mathrm{K}(\vec{0}) \rangle_{\mathrm{E}}$$

Summary

Conclusion and Outlook

- The E&M corrections to Kl3 decay are accessible to lattice QCD with exponentially vanishing finite volume errors
- By treating much of the QED contribution analytically we transfer effort from the computer to the lattice theorist
- While also complicated, the E&M corrections to Kl2 using IVR are now well underway led by Luchang Jin based on <u>2304.08026</u> [hep-lat]
- It may be a while before we tackle the Kl3 problem