

Equivariant transformer is all you need

Akio Tomiya (IPUT Osaka, Assistant Prof.)

+ Yuki Nagai (JAEA, Senior Scientist)

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of AI technology

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A)

Outline

- 1. What is Machine learning?
- 2. Transformer and Attention
- 3. Target system
- 4. Equivariant Attention
- 5. SLMC (self-learning MC)
- 6. Results

Short summary Towards to simulate LQCD: equivariant attention

- We propose Attention blocks for physical systems!
 - Machine learning for physics (Monte-Carlo + neural net approx)

Akio Tomiya

- It keeps field rotation/translation symmetry (equivariant)
- It can capture non-local correlation while CNN-type is hard to do
- We perform self-learning Monte-Carlo with the attention for "O(3) Yukawa system" system in condensed matter
 - Not for gauge system. Only for global symmetry
- We find that the attention layers improve acceptance rates systematically for increasing the number layers
 - It shows scaling behavior as in large language models

(c.f. We have proposed **gauge symmetric convolution** applied on 4d Full QCD, see arXiv: 2103.11965)

Akio Tomiya

What is machine learning? Symmetry?

What is machine learning?

E.g. Linear regression (supervised learning)

al Physics Studie Akinori Tanaka Akio Tomiya Koii Hashimoto

and Physics

In physics language, variational method (with fitting) **Data determines a function form Deep Learning**

Equivariance and convolution Neural network works quite well in natural science

Protein Folding problem (AlphaFold2, John Jumper+, Nature, 2020+), Transformer

Neural network wave function for many body (Carleo Troyer, Science 355, 602 (2017))

https://horomary.hatenablog.com/entry/2021/10/01/194825

Akio Tomiya

Equivariance and convolution

Knowledge ∋ Convolution layer = trainable filter, Equivariant

This can be any filter which helps feature extraction (minimizing loss) Equivariance reduces data demands. Ensuring symmetry (plausible Inference)

Akio Tomiya

Equivariance and convolution

Convolutional Neural network have been good job but local

Convolutional neural layers in neural networks keep translational symmetry,

it can be generalized to any continuous/discrete symmetry in the theory. It helps generalization.

However, 1 step of convolutional layer can pick up only local correlation and representability of neural networks is limited. Global correlations are sometimes important.

How can we overcome these difficulties?

Akio Tomiya

Transformer and Attention

Transformer and Attention Akio Tomiya Attention layer used in Transformers (GPT, Bard) arXiv:1706.03762

Output

Attention layer (in transformer model) has been introduced in a paper titled "Attention is all you need" (1706.03762) State of the art architecture of language processing.

Attention layer is essential.

Transformer and Attention Akio Tomiya **Transformer shows scaling lows (power law)**

arXiv: 2001.08361

Language modeling performance improves smoothly as we increase the model size, datasetset Figure 1 size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

- Transformers requires huge data (e.g. GPT uses all electric books in the world) Because it has few inductive bias (no equivariance)
- It can be improved systematically (obey scaling law)

Transformer and Attention Physically symmetric Attention layer

Attention layer can capture global correlation Equivariance reduces data demands for training

	Equivariance	Capturable correlation	Data demmands	Applications
Convolution (∈ equivariant layers)	Yes 👍	Local 😳	Low 👍	Image recognition VAE, GAN Normalizing flow
Standard Attention layer	No 😳	Global 👍	Huge 당	ChatGPT Bard Vision Transformer arXiv:1706.03762
(This work) Physically <i>Equivariant</i> attention	Yes 👍	Global 👍	?	This work arXiv: 2306.11527

Akio Tomiya

Target system and its symmetry

Target system and its symmetry Monte-Carlo + self-learning

Target system: Classical Heisenberg spin S_i + Fermion on 2d lattice

In lattice QCD language, Yukawa-theory with O(3) scalar field

 S_i : 3 component scalar field on site *i*

 $\hat{c}_{i\alpha}$: Fermion (annihilation op.) at site i with spin α Toy model for QCD.

Akio Tomiya

Target system and its symmetry Previous work

Target system: Classical Heisenberg spin S_i + Fermion on 2d lattice

$$H = -t \sum_{\alpha, \langle i, j \rangle} (\hat{c}_{i\alpha}^{\dagger} \hat{c}_{j\alpha} + h.c.) + \frac{J}{2} \sum_{i} \mathbf{S}_{i} \cdot \hat{\sigma}_{i}$$

Integrate out fermions $\hat{c}_{i\alpha}^{\dagger}, \hat{c}_{i\alpha}^{\dagger}$:

$$Z = \sum_{\{\mathbf{S}\}} \prod_{n} (1 + e^{-\beta(\mu - E_n(\{\mathbf{S}\}))})$$
Non-local. Difficult.
Time consuming

Using Hopping parameter expansion, we get a local effective model This is used in a previous work:

$$H_{\text{eff}}^{\text{Linear}} = -\sum_{\langle i,j \rangle} J_{i}^{\text{eff}} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + E_{0}$$

Akio Tomiya

Akio Tomiya

Equivariant attention

Self-learning Monte-Carlo

arXiv: 2306.11527.

Attention block makes effective spin field with non-local BST

Self-learning Monte-Carlo

arXiv: 2306.11527.

Variational Hamiltonian with Equivariant Attention layers

SLMC = Self-learning Monte Carlo = MCMC with variational hamiltonian

Self-learning Monte-Carlo SLMC = MCMC with an effective model

arXiv:1610.03137+

For statistical spin system, we want to calculate expectation value with $W(\{S\}) \propto \exp[-\beta H(\{S\})]$

On the other hand, an effective model $H_{\text{eff}}(\{S\})$ can compose MCMC,

 $\{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \text{ this distributes } W_{\text{eff}}(\{\mathbf{S}\}) \propto \exp[-\beta H_{\text{eff}}(\{\mathbf{S}\})]$ if the update $\lceil \rightarrow \rfloor$ satisfies the detailed balance. We can employ Metropolis test like $A_{\text{eff}}(\{\mathbf{S}'\}, \{\mathbf{S}\}) = \min(1, W_{\text{eff}}(\{\mathbf{S}'\})/W_{\text{eff}}(\{\mathbf{S}\})).$

Self-learning Monte-Carlo SLMC = MCMC with an effective model

arXiv:1610.03137+

For statistical spin system, we want to calculate expectation value with $W(\{S\}) \propto \exp[-\beta H(\{S\})]$

On the other hand, an effective model $H_{eff}(\{S\})$ can compose MCMC,

 $\{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \text{ this distributes } W_{\text{eff}}(\{\mathbf{S}\}) \propto \exp[-\beta H_{\text{eff}}(\{\mathbf{S}\})]$ if the update $\lceil \rightarrow \rfloor$ satisfies the detailed balance. We can employ Metropolis test like $A_{\text{eff}}(\{\mathbf{S}'\}, \{\mathbf{S}\}) = \min(1, W_{\text{eff}}(\{\mathbf{S}'\})/W_{\text{eff}}(\{\mathbf{S}\})).$

SLMC: Self-learning Monte-Carlo We can construct *double* MCMC with $H(\{S\})$ and $H_{eff}(\{S\})$

$$\{\mathbf{S}\} \longrightarrow \{\mathbf{S}\} \longrightarrow \{$$

- Effective model can have fit parameters
- **Exact**! It satisfies detailed balance with $W(\{S\})$
- It has been used for full QCD too (arXiv: 2010.11900, 2103.11965)

Self-learning Monte-Carlo Monte-Carlo + self-learning

Target system: Classical Heisenberg spin S_i + Fermion on 2d lattice

$$H = -t \sum_{\alpha, \langle i,j \rangle} (\hat{c}_{i\alpha}^{\dagger} \hat{c}_{j\alpha} + h.c.) + \frac{J}{2} \sum_{i} \mathbf{S}_{i} \cdot \hat{\sigma}_{i}$$
Symmetries:
- Global O(3)
- Translational
- 90-deg rotation
$$\begin{array}{c} & & & & & \\ & & & \\ \mathbf{S}_{i\alpha}^{\dagger} \hat{c}_{i\alpha} \sigma_{\alpha\beta}^{\gamma} \hat{c}_{i\beta} \\ & & & \\ &$$

In lattice QCD language, Yukawa-theory with O(3) scalar field

 S_i : 3 component scalar field on site *i*

 $\hat{c}_{i\alpha}$: Fermion (annihilation op.) at site i with spin α Toy model for QCD.

Akio Tomiya

Self-learning Monte-Carlo Previous work

Target system: Classical Heisenberg spin S_i + Fermion on 2d lattice

$$H = -t \sum_{\alpha, \langle i, j \rangle} (\hat{c}_{i\alpha}^{\dagger} \hat{c}_{j\alpha} + h.c.) + \frac{J}{2} \sum_{i} \mathbf{S}_{i} \cdot \hat{\sigma}_{i}$$

Integrate out fermions $\hat{c}_{i\alpha}^{\dagger}, \hat{c}_{i\alpha}^{\dagger}$:

$$Z = \sum_{\{\mathbf{S}\}} \prod_{n} (1 + e^{-\beta(\mu - E_n(\{\mathbf{S}\}))})$$
Non-local. Difficult.
Time consuming

(In previous work), using Hopping parameter expansion, we can get a local effective model:

$$H_{\text{eff}}^{\text{Linear}} = -\sum_{\langle i,j \rangle} J_{i}^{\text{eff}} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + E_{0}$$

In SLMC, Poor scaling, poor representability = poor acceptance!

Akio Tomiya

Self-learning Monte-Carlo Equivariant Attention layer

arXiv: 2306.11527.

We can construct effective hamiltonian with output of Attention layer because "output of Attention = smeared fields with non-local correlation"

Results

Transformer and Attention

(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

Akio Tomiya arXiv: 2306.11527 + update

Acceptance rate is improved with # of layers

Nx=Ny=6 (Lattice sites)

Summary Physics + Machine learning

- Equivariance helps generalization of machine learning models Attention enables us to capture global correlations
 - O(3) spin-fermion system can be efficiently simulated SLMC with Attention
 - In lattice QCD terminology, it is O(3) scalar + fermions
 - Increase of #of attention layers makes increase acceptance rate
 - Models with the CNN-type do not work (not showed)
 - SLMC with the equivariant Attention shows the scaling law
- Attention is all you need (?)
- Future work:
 - Apply ``equivariant attention" on full QCD
 - What is ``gauge equivariant attention"? Is it possible?
 - Can we marge it with gauge covariant convolution? (arXiv: 2103.11965)
 - Can we use this to the flow based sampling algorithm? (GomalizingFlow.jl)

30

Details

Self-learning Monte-Carlo Attention layer

Self-learning Monte-Carlo Equivariant under spin-rotation & translation

Akio Tomiya

 $\mathbf{S} = \begin{pmatrix} S_1^\top & S_2^\top & S_3^\top & S_4^\top \end{pmatrix}^\top$

- S_i : Classical Heisenberg spin at site i
- ${f S}$: A spin configuration

Gram matrix

$$G \equiv \mathbf{S}^{\mathsf{T}}\mathbf{S} = \begin{pmatrix} S_1^{\mathsf{T}}S_1 & S_1^{\mathsf{T}}S_2 & S_1^{\mathsf{T}}S_3 & S_1^{\mathsf{T}}S_4 \\ S_2^{\mathsf{T}}S_1 & S_2^{\mathsf{T}}S_2 & S_2^{\mathsf{T}}S_3 & S_2^{\mathsf{T}}S_4 \\ S_3^{\mathsf{T}}S_1 & S_3^{\mathsf{T}}S_2 & S_3^{\mathsf{T}}S_3 & S_2^{\mathsf{T}}S_4 \\ S_4^{\mathsf{T}}S_1 & S_4^{\mathsf{T}}S_2 & S_4^{\mathsf{T}}S_3 & S_4^{\mathsf{T}}S_4 \end{pmatrix}$$

- G is a matrix for coordinate but not for spin.

- Spin rotation for Si keeps G invariant.

If an effective hamiltonian is a function Gram matrix, it has rotational symmetry

3 component scalar, normalized

Self-learning Monte-Carlo Equivariant under spin-rotation & translation

arXiv: 2306.11527.

Akio Tomiya

$$\mathbf{S} = \begin{pmatrix} S_1^\top & S_2^\top & S_3^\top & S_4^\top \end{pmatrix}^\top$$

Local weighted sum over neighbors
 = "Smeared spin" with parameters
 ~ "Block spin sum" with parameters

$$\tilde{S}_{i}^{\alpha} = \sum_{l=0} W_{l}^{\alpha} S_{i+l} \qquad \alpha = Q, K, V$$

 $W_l^{\alpha} \in \mathbb{R}$: trainable

Translationally equivariant Rotatinally equivariant

 S_4

3 component scalar, normalized

Self-learning Monte-Carlo Equivariant under spin-rotation & translation

arXiv: 2306.11527.

Akio Tomiya

$$\mathbf{S} = \begin{pmatrix} S_1^{\top} & S_2^{\top} & S_3^{\top} & S_4^{\top} \end{pmatrix}^{\top}$$
$$S_i^{\top} = \begin{pmatrix} s_i^1 & s_i^2 & s_i^3 \end{pmatrix}^{\top}$$
$$\tilde{S}_i^{\alpha} = \sum W_l^{\alpha} S_{i+l} \quad \text{"Smeared spin"}$$

Gram matrix with smeared spin

$$M = \tilde{G}^{\alpha} \equiv (\tilde{\mathbf{S}}^{\alpha})^{\mathsf{T}} \tilde{\mathbf{S}}^{\alpha} \quad \alpha = Q, K, V$$

Translationally covariant Rotatinally invariant

 $S_A = \operatorname{ReLU}(M)W^{V}S$

 $= \operatorname{ReLU}(M)\tilde{S}^{\vee}$

Self-learning Monte-Carlo Attention layer

arXiv: 2306.11527.

Transformer and Attention Training scheme

arXiv: 2306.11527.