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Introduction
Quantum computing

▶ Quantum computing has potential applications to high-energy
physics.

One intriguing prospect is to use quantum algorithms to investigate
lattice field theories plagued by a sign problem at finite density.

This could in principle be achieved by quantum metropolis methods
or variational techniques. [G. Clemente at 15.10, L. Maio at 17.40]

▶ A challenge of the existing NISQ stage is that quantum hardware is
affected by noise.

Until fault-tolerant quantum hardware becomes available, we need
to deal with noise in some way → quantum error mitigation
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Introduction
Quantum error mitigation

We experimented with some quantum error mitigation techniques on
some simple quantum systems.

These techniques belong to two categories:

▶ Agnostic approaches, i.e.

• Zero noise extrapolation [K. Temme et al., 2017]

• Methods involving calibration matrices

• Qiskit/Measurement error mitigation

• General error mitigation [M. S. Jattana et al., 2020]

▶ Approaches based on a noise model, i.e.

• Global depolarizing noise mitigation
[J. Vovrosh et al., 2021, S. A. Rahman et al., 2022]
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Introduction
Quantum error mitigation

▶ Zero noise extrapolation

Artificially inflate noise by replacing a subset of cx gates with a larger odd

number of cx gates, then extrapolate the results in the limit of zero noise.

▶ General error mitigation

Mitigate errors using a 2N × 2N calibration matrix M such that MV = E ,
where E are the exact data and V are the data from the machine.

1. Split circuit C in two halves Ci and prepare calibration circuits CiC
−1
i (= I)

2. estimate Mi with 2N calibration runs and take the average M̄

Exponential overhead → we tested a possible workaround:

Construct N 2× 2 calibration matrices for the individual qbits and then build a

tensored 2N × 2N calibration matrix out of those. [see also P. D. Nation et al., 2021]
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Introduction
Quantum error mitigation

▶ Global depolarizing noise mitigation

Describe the noise by a global incoherent depolarizing noise model

ϵ(ρ) = (1− p)ρ+ p I
2N

⟨O⟩meas = (1− p)⟨O⟩exact + p
2N
Tr [O]

Estimate depolarizing parameter p by running a partner circuit with
known outputs.

Coherent noise is converted to incoherent depolarizing noise using

randomized compiling. [A. Hashim et al., 2021]
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Hamiltonian simulation
Hamiltonian simulation

▶ Hamiltonian simulation: e−i(H1+H2+...)t = (e−iH1
t
N e−iH2

t
N )N

Calibration circuit: N/2 trot. step for dt + N/2 trot. steps for −dt
[fgem, tgem]

Partner circuit: N/2 trot. step for dt + N/2 trot. steps for −dt
[dep]

▶ Applications:

• 2-sites Hubbard model (fermions mapped to a quantum computer by
JW)

• transverse-field Ising model on a square

• 2-plaq Z2 gauge theory with periodic and open boundary conditions
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Hamiltonian simulation
Hubbard model

This is a 4-qbits system. Evolution circuit requires 12 CX per trotter step,
increases to 18 CX on real hardware due to SWAP operations needed to fit the

circuit to a linear topology.
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▶ zne systematics not under control
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Hamiltonian simulation
Hubbard model

This is a 4-qbits system. Evolution circuit requires 12 CX per trotter step,
increases to 18 CX on real hardware due to SWAP operations needed to fit the

circuit to a linear topology.

▶ zne systematics not under control

▶ fgem/tgem equally effective for 2 trotter
steps, less effective for 4 trotter steps

▶ dep effective up to 4 trotter steps, where
the depolarizing parameter p increases to
0.6÷ 0.8 and raw signal strongly damped;
p not always consistent between different
observables → global depolarizing noise is
only a rough approximation for the real
noise
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Hamiltonian simulation
Transverse-field Ising model

A second 4-qbits system. Evolution circuit requires 8 CX per trotter step,
increases to 14 CX per trotter step on real hardware due to SWAPs.

▶ mem unable to mitigate the errors

▶ fgem/tgem are effective in mitigating the
errors for 2 trotter steps, but they fail for
4 trotter steps

▶ dep is effective for 2 trotter steps; less
effective for 4 trotter steps, where
p = 0.5÷ 0.8, but still able to mitigate
the errors to a good extent (compare with
the raw data where the dynamics is
completely missing)
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Hamiltonian simulation
Z2 gauge theory with PBC and OBC
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• PBC: 4 qbits ∼ tranverse-field Ising with 2 spins (2 CX per t.s.)

• OBC: 7 qbits (12 CX per t.s.)

Both systems fit perfectly to the qbit topology of ibmq kolkata.

Hamiltonian evolution simulated at constant dt = 0.3 for PBC and
at constant ntrotter steps = 2, 4, 6 for OBC.
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Hamiltonian simulation
Z2 gauge theory with PBC and OBC

▶ PBC: mem not enough, fgem/tgem unstable, dep mitigates errors up to
t ∼ 9÷ 13 (30÷ 43 trotter steps)

▶ OBC: mitigation effective at low t and for a small number of trotter steps
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Variational Quantum Eigensolver
Variational Quantum Eigensolver

▶ Variational Quantum Eigensolver [A. Peruzzo et al., 2014]

Minimize the cost function f (θ) = ⟨ψ(θ)|H|ψ(θ)⟩, where
|ψ(θ)⟩ =

∏
i U(θi )|⃗0⟩.

Hybrid algorithm: minimization done by a classical optimizer, cost
function evaluated by a quantum computer.

Handles: ansatz and optimizer

We want to keep low both (1) the number of iterations and (2) the depth
of the ansatz circuit.

For the systems we have considered, Cobyla combined with an HVA
converges in O(10÷ 100) iterations and has high fidelity with only a few
layers.

▶ Calibration circuits for dep: first and second half of the circuit composed
with their inverse → p1, p2 → take the average p̄
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Variational Quantum Eigensolver
Transverse-field Ising model

Hamiltonian Variational Ansatz for 2, 4-qbits Ising:

2-qbits Ising model [1 layer HVA + Cobyla, ibm manila (real)]

R.P. master’s thesis
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Variational Quantum Eigensolver
Transverse-field Ising model

4-qbits Ising model [2 layers HVA + Cobyla, ibm manila (sim and real)]

R.P. master’s thesis

Beware: we are well beyond the quantum volume (QVmanila = 32)
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Variational Quantum Eigensolver
Z2 gauge theory

Hamiltonian Variational Ansatz:

Note: this ansatz preserves the gauge symmetry.

Z2 gauge theory with OBC [2 layers HVA + Cobyla, ibmq kolkata (sim)]
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Conclusions

We applied and compared different error mitigation strategies to the
Hamiltonian simulation of some simple quantum systems.

▶ ZNE systematics were hard to keep under control

▶ GEM was effective only for very short-depth circuits

▶ we proposed a tensorised variant of GEM to improve its scalability with
mild drawbacks on its effectiveness

▶ the error mitigation using global depolarizing noise model worked more
reliably than GEM, despite the underlying noise model being only a very
rough approximation for the real noise

The tensorized GEM and global depolarizing error mitigation were also capable

of mitigating errors when applied to the VQE algorithm.
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Thank you for listening!
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