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Introduction

The “Sphaleron Rate” (imaginary linear-in-frequency part of the topological density retarded Green’s function)
determines the real-time relaxation rate of axial quark number for light quarks in a hot medium, and is relevant
in heavy-ion collisions and electroweak baryogenesis. We recently showed how it can be determined from
standard Euclidean lattice simulations of pure gauge theory via a novel saddlepoint method. We extend this
work to find the sphaleron rate for (2+1)-flavor QCD with Nτ = 8 − 16 and HISQ action at almost physical
pion masses in the temperature range 0.2 − 3 GeV or 1.2 − 18 times the crossover temperature Tpc.

Saddlepoint method

In [1], for processes given by thermal activation over a saddlepoint we showed how to relate a set of side-by-side
Euclidean fluctuations to a real-time rate. In the case of topology in gauge theories, the saddlepoint corresponds
to the sphaleron solution, and we can measure its crossing of the separatrix by calculating

QS ≡ Q0 + Qhalf − Qβ/2 , (1)

where Q0 and Qβ/2 are defined as the topology enclosed in the t = 0 and t = β/2 3D slices [2] in the gradient
flow direction, while Qhalf is the topology enclosed in half our 4D lattice. The real-time rate is obtained with
a conversion factor 2/T from the Euclidean rate computed on the lattice,
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Figure 1: Sketch of how we define and identify sphalerons in QCD.

Figure 2: Sketch of the calculation performed on our 4D Euclidean lattices to extract the sphaleron rate. One dimension of the
lattice is not drawn for convenience.

Observables on the lattice

The quantities Q0, Qβ/2, Qhalf are measured using the clover definition. To solve the 3D gradient flow equations
we have implemented an Euler algorithm (we just care about ending in vacuum, not the precise configurations
we pass through). Two more important techniques are used:

1. We also apply a certain amount of 4D gradient flow in order to reduce the UV noise, and obtain clean
observables. This is done through a Runge-Kutta 3rd order algorithm as implemented in openQCD [3].
But the application of this flow changes the answer and we need to correct for it. The form of this correction
was derived in [1] and takes the form of
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where we have defined τF ≡ 8π2τF/
(
a2Nτ

2). This way, we will add enough flow until topological number
QS is close enough to an integer, while the individual contributions in Eq. (1) do not have to be.

2. As we evolve the 3D slices, after some amount of flow has been applied, we use blocking in order to reduce
the total amount of links. Effectively what we are doing is discarding UV contributions that are not
important for us, but we reduce the total amount of links and increase each step-size of flow.

It is important to add here that in order for the calculation to work we need to be in a regime without instantons,
as otherwise our picture of small fluctuations around a saddlepoint is not correct.

Determination of αs from gradient flow

Using the results from [4], we determine the MS coupling from the energy as a function of gradient flow,
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with k1 ≈ 1.098 and k2 ≈ −0.982 for SU(3) theory without fermions, where we use the improved definition
[5] of
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, using Zeuthen flow [6], and the scale is given by µ = 1/

√
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calculate it at the scale of

µ = πT → τF/a2 = 1
8 (πNτ )2

, (5)

which is enough to reduce the lattice artifacts even on coarse lattices, without overflowing. We can then run
the coupling to any other scale within reach of a perturbative expansion using the β−function at five loops [7].

Pure-gauge results
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Fit for the sphaleron rate on pure-gauge configurations

Figure 3: Sphaleron rate determined on pure-gauge configurations with Nτ = 10, as a function of T/Tc, where Tc is the critical
temperature of the pure-gauge theory, Tc ∼ 287 MeV.

The pure-gauge results have been generated using the HMC algorithm with the Wilson action, as implemented
in [3]. Figure 3 shows the updated data from [1]. The dependence on volume, lattice spacing, and gradient
flow depth were thoroughly investigated in the paper. Assuming that the sphaleron rate scales with (αsT )4,
we have performed a fit where the coupling αs has been found from gradient flow and matching to a known
observable (see previous section). Fitting to the data yields

Γsphal,s ≈ A (αs(µ = BπT )T )4 → Γsphal,s ≈ (25.7 ± 1.3) (αs(µ = 1.5πT )T )4 (6)

Full QCD results

We have reused ensembles generated with the RHMC algorithm for 2+1 flavors of highly improved staggered
quarks (HISQ) in the sea, with a physical strange and and almost physical light quarks at ml/ms = 1/20, as
provided by the HotQCD and TUMQCD collaborations. For those data, we propose a fit in the form of
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Figure 4: Sphaleron rate determined on 2+1 configurations with different Nτ , fitted to the proposed formula.

Outlook

Many of the lower temperature configurations in the full QCD case with small Nτ (∼ 8, 10) suffer from big
fluctuations in QS that need large amounts of 4D gradient flow to tame. This leads to overflowing the lattice and
being unable to reliably correct for this flow. Some ideas to solve this issue would be to apply inverse-blocking
techniques, or using improved definitions of the field-strength tensor on the lattice, in order to be able to use
lower amounts of flow. We are currently investigating these approaches.
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