1 Motivation

The evolution of the quark-gluon plasma (QGP) in heavy-ion collisions is described by different models and effective theories

- limited applicability of methods
- general first-principle approach is still missing
\triangleright Real-time correlation functions of $T^{\mu \nu}$ and other operators provide better understanding of the QGP evolution
- transport coefficients (bulk and shear viscosity), spectral functions, thermal entropy ratio, ...

Ab-initio lattice calculation of transport coefficients is hard - complex action problem of the theory

- small signal-to-noise ratio of observables

\triangleright Anisotropic lattice can improve the situation:

- We developed a complex Langevin approach that utilizes lattice spacing anisotropies to stabilize the simulations (see [1])
- Our goal here: renormalization of $T^{\mu \nu}$, scale setting, and determination of physical anisotropy for large bare anisotropies

2 Method: Wilson gradient flow

\triangleright Gradient flow equation

$$
\frac{d \tilde{A}_{\mu}}{d \theta}(\theta, x)=D_{\nu} F_{\mu \nu}(\theta, x), \quad \tilde{A}_{\mu}(\theta=0, x)=A_{\mu}(x)
$$

with the field strength tensor $F_{\mu \nu}$ and the covariant derivative $D_{\mu}=\partial_{\nu}-\left[\tilde{A}_{\mu}, \cdot\right]$
\rightarrow Suppression of UV modes by smearing the configuration [2]
Wilson action on an anisotropic lattice
$S_{\mathrm{W}}=\frac{\beta}{N_{c}}\left\{\xi_{\text {bare }} \sum_{x, i} \operatorname{Tr}\left[U_{0 i}(x)-1\right]+\frac{1}{\xi_{\text {bare }}} \sum_{x, i<j} \operatorname{Tr}\left[U_{i j}(x)-1\right]\right\}$,
with inverse coupling $\beta=2 N_{c} / g^{2}$ and anisotropy $\xi_{\text {bare }}=a_{s} / a_{\tau}$
\triangleright Anisotropic Wilson flow equation on the lattice
$\tilde{U}_{\mu}(\theta+\epsilon, x)=\exp \left[i \epsilon t^{a} W_{\mu}^{a}\left(x, \xi_{W}\right)\right] \tilde{U}_{\mu}(\theta, x), \quad \tilde{U}_{\mu}(0, x)=U_{\mu}(x)$,
with $W_{\mu}^{a}\left(x, \xi_{W}\right)=\frac{1}{\beta \xi_{W}} \delta S_{W} / \delta A_{\mu}^{a}(x)$ and the flow-anisotropy ξ_{W}

3 Determination of the scale and anisotropy

- Introduction of the reference w_{0}-scale [3] as the flow time θ is a quantity of mass dimension two

$$
\left.\theta \frac{d}{d \theta}\left[\theta^{2} B(\theta)\right]\right|_{w_{0}^{2}=\theta}=0.1
$$

$\rightarrow w_{0}$-scale is a lattice spacing independent quantity
\triangleright Equipartition relation at $\theta_{0}=w_{0}^{2}$ [4]

$$
R\left(\xi_{W}\right):=B\left(\theta_{0}\right) /\left[\xi_{W}^{2} E\left(\theta_{0}\right)\right] \quad \Rightarrow \quad R\left(\xi_{\text {phys }}\right) \stackrel{!}{=} 1
$$

\rightarrow Allows determination of physical anisotropy $\xi_{\text {phys }}$
\triangleright Electric / magnetic part of the energy density

$$
B(\theta)=\sum_{x, i<j} \operatorname{Tr} F_{i j}^{2}(\theta, x), \quad E(\theta)=\sum_{x, i} \operatorname{Tr} F_{i 0}^{2}(\theta, x)
$$

- clover leaf approximation of $F^{\mu \nu}$ reduces cut-off effects
- observables in units of the lattice spacing

4 Behavior of the w_{0}-scale and the physical lattice anisotropy

Figure 1: Physical anisotropy $\xi_{\text {phys }}$ (top), lattice spacing a / w_{0} in units of the w_{0}-scale (middle) and unflowed temporal/spatial plaquette averages $U_{s t}, U_{s s}$ (bottom) for different bare anisotropies $\xi_{\text {bare }}$ and inverse couplings β

Setup:

\triangleright We simulate 3+1D SU(2) Yang-Mills on a Euclidean $N_{s}^{3} \times N_{\tau}=32^{3} \times$ $\left\lceil\xi_{\text {bare }} \cdot 32\right\rceil$ lattice at moderate inverse couplings of $\beta=2.4,2.5$ and 2.6
\triangleright Ensembles are generated using a Langevin evolution with a thermalization time of 10^{7} steps and a stepsize of $\epsilon=10^{-4}$. After thermalization, 100 configurations separated by 10^{4} steps are gathered for the statistical analysis. The Wilson flow utilizes a third-order RungeKutta update [2]

Observations:

- The physical anisotropy behaves linearly below $\xi_{\text {bare }}=6$ and transitions towards an almost constant behavior at $\xi_{\text {bare }}=8$
\triangleright The lattice spacing a / w_{0} increases with the bare anisotropy. There is a local minimum near the transition at $\xi_{\text {bare }}=8$ followed by a gradual increase
\triangleright The spatial plaquette average becomes almost constant for $\xi_{\text {phys }}>6$ while the temporal plaquette average steadily rises

5 Conclusion \& open questions

Behavior of the physical anisotropy is insensitive w.r.t. thermalization time, step sizes, and temp./spat. volume changes.

Our results may hint at geometrical or $\mathrm{SU}(2)$-specific saturation effects (e.g., bulk phase transition), or indicate a new feature.

Further investigations for different couplings and spacetime dimensions are ongoing.

6 References

[1] K. Boguslavski, P. Hotzy and D. I. Müller, JHEP 06 (2023), 011 [arXiv:2212.08602].
[2] M. Lüscher, JHEP 08 (2010), 071 [arXiv:1006.4518 [hep-lat]].
[3] S. Borsanyi et al. [BMW], JHEP 09 (2012), 010 [arXiv:1203.4469 [hep-lat]]
[4] S. Borsanyi et al., [arXiv:1205.0781 [hep-lat]].

