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Motivation
▶ Universal quantum computers allow for real

time evolution in quantum field theory. One
of the simplest examples is λϕ4 [1,2,3].

▶ In [4], a digitization inspired by Gaussian
quadrature for the path integral where ϕ is
restricted to the zeros of the nmax order Her-
mite polynomial is used. With the following
modification and resulting commutation re-
lations, the Dyson Interaction picture is pre-
served:
■ [a, a†] = 1 − nmax |nmax − 1⟩⟨nmax − 1|
■ [a†a, a] = −a
■ [a†a, a†] = a†

▶ It is shown in [4] that since digitization pro-
vides a field cutoff, the perturbation series
in λ will converge with a radius determined
from complex singularities, for sufficiently
small |λ| [5]. See below for case when
nmax = 8 (from [4]).
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▶ In 1+1 dimensions these singularities pinch
the real axis for λ = λc , which indicates sec-
ond order phase transition.

▶ For the undigitized anharmonic oscillator, the
moments ⟨E |x2l |E⟩ can be recursively calcu-
lated [6,7].

Bootstrap Foundation
▶ We build up a moment recursion starting

with three identities and constraints:

⟨[H, O]⟩ = 0 (1)

⟨HO⟩ = E⟨O⟩ (2)

⟨O†O⟩ ≥ 0 (3)

▶ By using these as a starting point, combining with O =
xm , xmp, xm−1 yielding an equation that can be used for mo-
ment recursion:

0 = 2mE⟨xm−1⟩

+
1
4

m(m − 1)(m − 2)⟨xm−3⟩

− ⟨xmV ′(x)⟩ − 2m⟨xm−1V (x)⟩ (4)

▶ Now we have a moment recursion that relates x and E values,
captures the dynamics of the Hamiltonian, and returns the virial
theorem for m=1.

▶ A Hankel matrix can be constructed from the positivity of the
norm:

0 ≤ ⟨O†O⟩ =
∑

ij

c∗
i ⟨x

i+j⟩cj ≡
∑

ij

c∗
i Mij cj (5)

Bootstrap Algorithm
▶ Start with a Hamiltonian with a given poten-

tial and find a recursive statement for this po-
tential with equation (4).

▶ We take a search space S and a set of trial
points A within S.
1. For each point in A, generate 2K-2 points of

the moment sequence for each.
2. For these terms, construct a KxK Hankel Ma-

trix where Mij = ⟨x i+j⟩ for each point in A.
3. Check positive definiteness of this matrix. If

positive definite accept this point, if not throw
it out.

4. Obtain a set of values at depth K: BK . Note:
BK ⊆ A ⊂ S and, working through different
values of K: BK +1 ⊆ BK

Infinite Anharmonic Oscillator
▶ How does the quantum mechanical boot-

strap of [6,7] behave when solving well
known systems? Below, the process is re-
peated for the anharmonic oscillator, repro-
ducing the results from [6].

▶ H = p2 + gx2 + hx4 with g = h = m = ω = ℏ = 1

▶ From top down, depths at K= 7,8,9,10,12

Questions to be Addressed
▶ How does this bootstrap apply to digitized

cases, and what, if any changes are to be
made?

▶ What kind of information can be extracted
from the digitized cases?

Digitized Oscillators
▶ Now, by taking Hnmax (x̂) = 0 we can re-

express the xnmax moment in terms of lower
powers of x, via the Hermite polynomial. For
example the nmax = 4 case:

x̂4 = 3x̂2 −
3
4

(6)

▶ Now, moments larger than nmax are super-
fluous. This limits us to a nmax

2 x nmax
2 Hankel

Matrix.
▶ New terms are introduced from the modified

relations, for instance in the nmax = 4 case:
⟨E |nmax − 1⟩

Digitized Oscillators
▶ Knowing ⟨E |x̂0|E⟩, ⟨E |x̂2|E⟩, ..., ⟨E |x̂nmax−2|E⟩

is equivalent to the knowledge of
|⟨xj |E⟩|2 ≥ 0 for the nmax

2 positive zeros
of the Hermite polynomial of degree nmax

▶ We predict that the positivity constraint im-
posed by the eigenvalues of the nmax

2 x nmax
2

Hankel matrix are equivalent to the con-
straints on energy also imposed by the pos-
itivity of |⟨xj |E⟩|2 ≥ 0. We will attempt to
show this for a digitized harmonic and an-
harmonic oscillator with nmax = 4.

Digitized Results
▶ The digitized harmonic oscillator:

▶ The orange and blue are from the eigenvalue
process, while the green and red are from
the Hermite polynomial process. The inner
product is set to zero, but if included would
just provide a shift of the graph. Energy
falls within the range 3−

√
6

2 to 3+
√

6
2 . Here we

have:
⟨x2⟩ = E − 2|⟨E|3⟩|2 (7)

▶ When looking at the digitized anharmonic
oscillator we get:

⟨x2⟩ =
1

6λ + 1
(E − 2|⟨E|3⟩|2

+ 3λ
√

6⟨E|1⟩⟨3|E⟩

+ 9λ|⟨E|2⟩|2 + 9λ|⟨E|3⟩|2) (8)

▶ It is easy to see how this will return similar
results to the digitized harmonic case. When
λ = 0 it returns this case. The only differ-
ences for differing λ being a rescaling and
coordinate shift of the same graph.

▶ For λ = 1
2 and λ = 1 they would respectively

have energy fall in ranges of 6 − 2
√

6 to 6 +
2
√

6 for the former and 21−7
√

6
2 to 21+7

√
6

2 for
the latter.

Future Work
▶ Repeat the same work above to see if it

holds for nmax = 8 with more constraints on
possible energies

▶ Investigate the properties of coupled nmax =
4 oscillators for potential insight into second
order phase transitions
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