The quenched glueball spectrum from smeared spectral densities

Antonio Smecca

in collaboration with

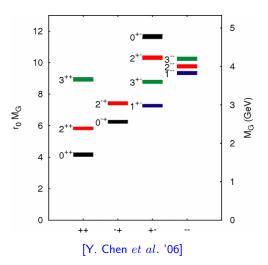
M. Panero (U. of Turin), N. Tantalo (U. of Rome 2), D. Vadacchino (U. of Plymouth)

University of Turin

40th International symposium on Lattice Field Theory Fermilab 4th of August 2023

Glueball spectrum in pure $SU(3)\ {\rm Yang-Mills}$

- Gluballs are quarkless bound states predicted by QCD J^{PC}
- Calculation of glueball masses is important for helping experimental searches
- Lattice calculations (quenched/unquenched) are particulary useful in this regard



Glueballs on the lattice

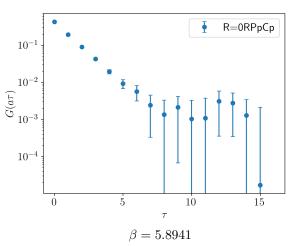
Glueballs masses can be extracted from lattice correlation functions

$$G(a au) = \langle \Phi(a au)\Phi(0) \rangle = \sum_{n} |A_{n}|^{2} e^{-a au\omega_{n}}$$

 $A_{n} = \langle n|\Phi(0)|0 \rangle \rightarrow \text{energy state overlap}$

Bad signal/noise ratio

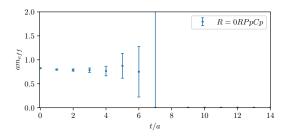
see talk by [L. Barca Tue 17:20]



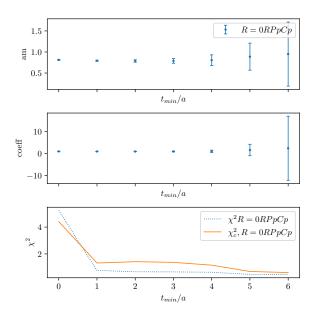
A. Smecca (University of Turin)

Variational method

$$\sum_{j} C_{ij}(t_0) v_j = \sum_{j} \lambda_j(t_0) C_{ij}(0) v_j$$
$$am_{eff}(t_0) = \ln\left(\frac{v_i C_{ij}(t) v_j}{v_i C_{ij}(t-1) v_j}\right)$$
$$C_{ii}(a\tau) = |A_n|^2 \cosh(am_i \tau - \frac{N_L}{2})$$



- The "standard" method led to impressive results over the years
- Variational method help disentangle states
- However, effective mass plot could still be affected by excited states contribution
- Pratically can only use few lattice times



Can we use spectral functions?

Not an original idea! [Pawlowski *et al.* '22]

Writing the Euclidean correlator in the Källen-Lehmann representation

$$G(a\tau) = \int_{\omega_{\min}}^{\infty} d\omega \ \rho(\omega) e^{-a\omega\tau}$$

- → For lattice correlators this leads to a **ill-posed inverse problem**
- \rightarrow Need a method to regularise the problem. Also, finite volume (L) means

$$\rho_L(\omega) = \sum_n \frac{|\langle n|\Phi(0)|0\rangle|^2}{2\omega_n(L)} \delta(\omega - \omega_n(L)).$$

HLT method [Hansen, Lupo, Tantalo '19]

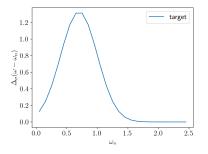
For more details see also talks [A. Lupo Tue 17:40] and [A. $% \left[A^{2}\right] =\left[A^{2}\right] \left[A^{2}\right] \left$

De Santis Tue 16:20]

or other application [A. Evangelista Thu 16:40] and [A. Barone Mon 17:00]

We can use Backus-Gilbert regularisation to extract **smeared** spectral function from the lattice correlation function

$$K(\omega; \boldsymbol{g}) = \sum_{\tau=1}^{\tau_{\max}} g_{\tau}(\sigma) e^{-a\tau\omega}$$



$$\rho_L^{\sigma}(\omega) = \int_0^{\infty} d\omega \ \rho_L(\omega) \Delta_{\sigma}(\omega - \omega_n(L)) = a \sum_{\tau=1}^{\infty} g_{\tau}(\sigma) G(a\tau).$$

Kernel reconstruction

$$A_{n}[\boldsymbol{g}] = \int_{\omega_{0}}^{\infty} d\omega \ w_{n}(\omega) \left| K(\omega; \boldsymbol{g}) - \Delta_{\sigma}(\omega - \omega_{n}(L)) \right|.$$

$$W_{n}[\boldsymbol{g}] = \frac{A_{n}[\boldsymbol{g}]}{A_{n}[\boldsymbol{0}]} + \lambda B[\boldsymbol{g}],$$

$$B[\boldsymbol{g}] = B_{\text{norm}} \sum_{\tau_{1}, \tau_{2}=1}^{\tau_{\text{max}}} g_{\tau_{1}}g_{\tau_{2}} \operatorname{Cov}(\tau_{1}, \tau_{2}),$$

$$B[\boldsymbol{g}] = B_{\text{norm}} \sum_{\tau_{1}, \tau_{2}=1}^{\tau_{\text{max}}} g_{\tau_{1}}g_{\tau_{2}} \operatorname{Cov}(\tau_{1}, \tau_{2}),$$

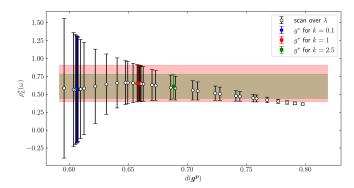
Stability analysis

- Method introduced in [Bulava *et al.* '21]
- Choose final result in statistically dominated region

$$\frac{A[\boldsymbol{g}]}{A[0]} = kB[\boldsymbol{g}]$$

• Final results need to be extrapolated

$$\rho(\omega) = \lim_{\sigma \to 0} \lim_{L \to \infty} \rho_L^\sigma(\omega)$$

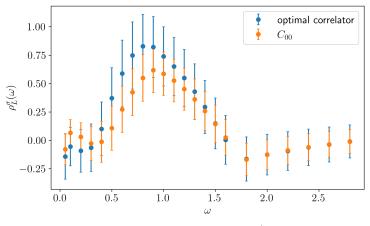


We are currently at a very pleriminary stage and plan to soon include more values of β and other representations A_1^{-+}, E^{++}, \ldots

J^{PC}	β	$L^3 \times T$	N_{cnfg}
1		$32^3 \times 32$	
A_1^{++}	6.0625	$32^3 \times 32$	15000

Glueball smeared spectral functions

Studying the spectral functions allows to check contributions to the optimal correlators in the variational method



$$\beta = 5.8941, \ \sigma = 0.15/a$$

Glueball spectrum from $\rho_{\sigma}(\omega)$

Fit of smeared spectral functions

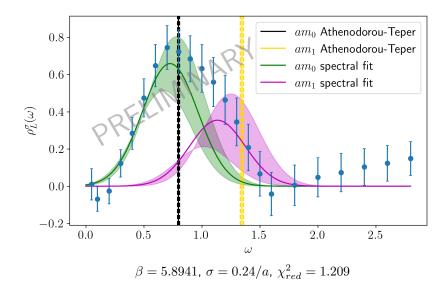
[Athenodorou, Teper '20]

1.25 am_0 Athenodorou-Teper 1.00 am_1 Athenodorou-Teper am_0 spectral fit 0.75 am_1 spectral fit 0.50 $\rho^{\sigma}_{L}(\omega)$ 0.250.00-0.25-0.500.51.50.0 1.0 2.02.5ω $\beta = 5.8941, \ \sigma = 0.15/a, \ \chi^2_{red} = 2.67$

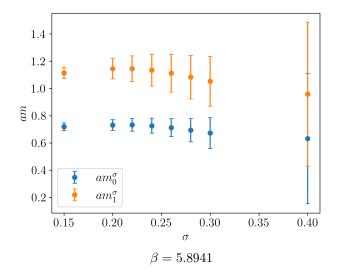
- Introduced in [Del Debbio, *et al.* '23]
- We can perform fit of spectral functions rather than correlators
- Minimise χ^2 function defined in terms of $\mathrm{Cov}[\rho^\sigma]$

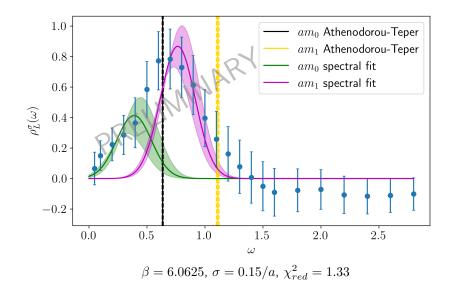
$$f_k^{\sigma}(\omega) = \sum_k a_k \ e^{\frac{-(\omega-\omega_k)^2}{2\sigma^2}},$$

- Extrapolation $\sigma \rightarrow 0$ crucial for accurate results



We cannot yet extrapolate $\sigma \rightarrow 0$ but we can still check the σ dependence





- We explored the possibility of extracting glueball masses from fits of smeared spectral densities
- Preliminary results are encouraging but a full study still required to make sensible comparison with other lattice results
- We are currently increasing the statistics and collecting new configurations to study different channels $(A_1^{-+}, E^{++}, \ldots)$, different values of β and different volumes.