Charmonium spectroscopy with optimal distillation profiles

J. Finkenrath, R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon, J.A. Urrea-Niño

2023 4 4

The 40th International Symposium on Lattice Field Theory

Trinity College Dublin FOR 5269
Coláiste na Trionóide, Baile Átha Cliath
The University of Dublin

Motivation

Goal: Map out the charmonium spectrum + mixing with glueballs/light hadrons.

- $N_{f}=3+1$ ensembles with a physical charm quark ($m_{\eta_{c}} \approx 3 \mathrm{GeV}$) and 3 degenerate light quarks.
- Clover-improved fermion action + Lüscher-Weisz gauge action. [r. Hollwieser etal.

Eur. Phys. J. C 80, 349]

- Heavy ensemble A1
- $32^{3} \times 96, \beta=3.24, a \approx 0.054 \mathrm{fm}$.
- $m_{\pi} \approx 1 \mathrm{GeV}$. Decay thresholds are pushed up, e.g scalar glueball $\rightarrow \pi \pi$ at around 2 GeV .
- Preliminary Results: Low-lying charmonium + light mesons + glueballs.
- Light ensemble B
- $48^{3} \times 144, \beta=3.43, a \approx 0.043 \mathrm{fm}$.
- $m_{\pi} \approx 420 \mathrm{MeV}$. Light quarks at physical sum is convenient for charmonium.
- Results: Low-lying charmonium.

Obstacles

- Disconnected meson diagrams
- $C_{q_{1} q_{2}}^{\text {(dis.) }}(t) \propto\left\langle\operatorname{Tr}\left(\Gamma D_{q_{1}}^{-1}[t, t]\right) \operatorname{Tr}\left(\bar{\Gamma} D_{q_{2}}^{-1}[0,0]\right)\right\rangle_{\text {gauge }}$
! Needed for iso-singlet operators. Often omitted but vital for mixing.
\times Suffer from a signal-to-noise problem. Signal lost at early times.
- Glueball correlators
- $C(t)=\langle G(t) G(0)\rangle_{\text {gauge }}$. Disconnected-like correlation.
- $G(t)$ built from traces of 3D Wilson loop or 3D Laplacian eigenvalues with APE smearing. [8. Berg \& A. Billore, Nulear Physics B 221, 109-140] [C. Morringstar etal., Phys. Rev. D88, 014511] [M. Albanese et al., Phys. Lett. B 192, 163] .
\times Operators usually have large noise. Large statistics are required.
\times Suffer from a signal-to-noise problem. Signal lost at early times.
We have a small window of opportunity:
- Signal only available at early times.
- Excited-state contamination is dominant at early times.

We need a method which reduces excited-state contamination at early times.

Methods

We extract masses from temporal correlation functions between zero-momentum meson operators $\bar{\psi}\left\lceil\psi\left(\Gamma=\gamma_{5}, \gamma_{i}, \nabla_{i}, \ldots\right)\right.$, so we need good operators. Create states that resemble the energy eigenstates.
Distillation smears quark fields via orthogonal projection onto space of smooth, low-energy fields. [M. Peardon etal. Phys. Rev. D80, 054506 (2009)]

- $\psi \rightarrow V[t] V[t]^{\dagger} \psi, V[t]$: eigenvectors of 3D covariant Laplacian $\nabla^{2}[t]$.
- Perambulators: $\tau\left[t_{1}, t_{2}\right]=V\left[t_{1}\right]^{\dagger} D^{-1} V\left[t_{2}\right]$. Calculation is feasible but dominates cost.
- Elementals: $\Phi[t]=V[t]^{\dagger} \Gamma V[t]$. Wide variety of Γ available at fixed inversion cost.

Improved Distillation introduces an optimal meson profile for each Γ and energy level. [J. A. Urrea: Niño. Knechili, T. Korzec \& M. Peardon. Phys. Rev. D 106, 034501 (2022)]

- Variational basis $\psi_{k}=V[t] J_{k}[t] V[t]^{\dagger} \psi, J_{k}[t]_{i j}^{i j}=\delta_{\alpha \beta} \delta_{i j} g_{k}\left(\lambda_{i}[t]\right)$
- Optimal elemental $\left.\Phi_{[t]}^{i j}\right]_{\alpha \beta}=\tilde{f}\left(\lambda_{i}[t], \lambda_{j}[t]\right) v_{i}[t]^{\dagger} \Gamma_{\alpha \beta} v_{j}[t]$
- Optimal meson profile $\tilde{f}\left(\lambda_{i}[t], \lambda_{j}[t]\right)=\sum_{k} c_{k} g_{k}\left(\lambda_{i}[t]\right)^{*} g_{k}\left(\lambda_{j}[t]\right) . c_{k}$ are calculated via GEVP.

Profile Optimization

(1) Select $\Gamma \leftrightarrow$ Symmetry channel.
(2) Select basis of quark profiles $g_{k}(\lambda)$. Our choice: $g_{k}(\lambda)=e^{-\frac{\lambda^{2}}{2 \sigma_{k}^{2}}}$.
(3) Build correlation matrix $C_{i j}(t)=\left\langle\mathcal{O}_{i}(t) \overline{\mathcal{O}}_{j}(0)\right\rangle_{\text {gauge }}$ with $\mathcal{O}_{i}=\bar{\psi}_{i} \Gamma \psi_{i}$.
(4) Prune matrix via SVD: $\tilde{C}(t)=U^{\dagger} C(t) U, U$: Singular vectors of largest singular values at time t_{0}. Choose t_{0} so that only lowest states contribute. [J. Balog et al., Phys. Rev. D 60, 094508] [F. Niedermayer et al., Nuclear Physics B 597, 413-450]
(3) Solve GEVP $\tilde{C}(t) v_{n}\left(t, t_{0}\right)=\rho_{n}\left(t, t_{0}\right) \tilde{C}\left(t_{0}\right) v_{n}\left(t, t_{0}\right)$. MM. Lischer \& u. Wolft, Nuclear Physics B 339, 222-252] [B. Blossier et al. Journal of High Energy Physics 2009, 094-094]
(6) Extract effective mass of n-th state from $\rho_{n}\left(t, t_{0}\right) \propto e^{-m_{n} t}$.
(1) Build optimal profile for n-th state as

$$
\tilde{f}\left(\lambda_{i}[t], \lambda_{j}[t]\right)=\sum_{k} v_{n}\left(t_{1}, t_{0}\right)^{(k)} g_{k}\left(\lambda_{i}[t]\right)^{*} g_{k}\left(\lambda_{j}[t]\right) .
$$

Choose t_{1} in a plateau region.

Improvement in Light Ensemble

Ground state of $\Gamma=\gamma_{5}$ in A_{1}^{-+}irrep in ensemble B from connected correlation.

- Highly suppressed excited-state contamination at early times.
- Isolation of ground state in the useful time window.

Charmonium Spectrum in Light Ensemble

Omitting disconnected contributions.

\checkmark Good agreement with nature.
\checkmark Hyperfine splitting $m_{J / \Psi}-m_{\eta_{c}}=111.8(1.4) \mathrm{MeV}$ is close to nature (113.0(5) MeV). $2 S$ splitting has similar agreement: $45.9(1.8) \mathrm{MeV}$ vs 48(1) MeV.
\checkmark Similar statistical uncertainty as other lattice works, e.g 118.6(1.1) MeV [Haton e tal., Phys. Rev. D Do2, 054511] and $116.2(1.1) \mathrm{MeV}$ [DeTare eal., Phys. Rev. D. 99,034509 .

Optimal meson distillation profiles in Light Ensemble

Charmonium profiles of ground states for local Γ.

- Non-trivial modulation for different Г. Improvement over constant profile.

Charmonium Spatial Profile in Light Ensemble

Look at the effect of $V[t] \operatorname{Tr}_{\text {Spin }}\left(\gamma_{5} \tilde{\Phi}[t]\right) V[t]^{\dagger}$ on a point-like source when $\Gamma=\gamma_{5}$.

\checkmark Spatial structure arises and agrees with S-wave behavior. $L=0, S=0$.
\checkmark States are well contained in the 3D box. Finite-volume effects under control.
\checkmark Large lattice volume gives good resolution. Further study of profiles is feasible.

Preliminary Results in Heavy Ensemble

- Connected contributions are the clearest. E.g $\pi=\frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d)$.
- Disconnected contributions and mixing are noisy but still give a signal. E.g $\eta_{c}=\bar{c} c$
- Measuring glueballs is difficult.

Optimal meson distillation profiles

- Similar suppression and node pattern as in light ensemble.
- Light quarks have narrower profiles. Costs could be reduced for low-lying light mesons.

Conclusions and Outlook

\checkmark Optimal meson profiles benefit calculations with charm and light quarks at little additional cost.
\checkmark Resulting charmonium spectrum agrees with nature at flavor symmetric point at physical sum.
\checkmark Statistical uncertainty is competitive with other state-of-the-art lattice works.
\checkmark Narrower profiles of light mesons hint to possible cost savings.
** Glueball hunting is not easy but there is some hope \rightarrow Talk by Lorenzo Barca.
Further uses for the profiles:

- D-meson spectroscopy including non-zero spatial momentum. Talk by Jan Neuendorf.
- Hybrid potentials from Laplace trial states. Talk by Roman Höllwieser.

Thank you for your attention!

Backup: Other mass splittings

$$
\begin{aligned}
\Delta m_{1 S-1 P} & =\frac{1}{9}\left(m_{\chi_{c 0}}+3 m_{\chi_{c 1}}+5 m_{\chi_{c 2}}\right)-\frac{1}{4}\left(m_{\eta_{c}}+3 m_{J / \psi}\right) \\
\Delta m_{S O} & =\frac{1}{9}\left(5 m_{\chi_{c 2}}-3 m_{\chi_{c 1}}-m_{\chi_{c 0}}\right) \\
\Delta m_{\text {tensor }} & =\frac{1}{9}\left(3 m_{\chi_{c 1}}-m_{\chi_{c 2}}-2 m_{\chi_{c 0}}\right) \\
\Delta m_{1 \text { PHF }} & =\frac{1}{9}\left(m_{\chi_{c 0}}+3 m_{\chi_{c 1}}+5 m_{\chi_{c 2}}\right)-m_{h_{f}}
\end{aligned}
$$

[DeTar et al., Phys. Rev. D. 99, 034509]

Splitting	This work (MeV)	PDG (MeV)	DeTar et al. (MeV)
$\Delta m_{1 P-1 S}$	$447.3(5.5)$	$456.64(14)$	$462.2(4.5)$
$\Delta m_{S O}$	$43.93(87)$	$46.60(8)$	$46.6(3.0)$
$\Delta m_{\text {tensor }}$	$14.43(41)$	$16.27(7)$	$17.0(2.3)$
$\Delta m_{1 \text { PHF }}$	$-0.2(1.6)$	$-0.09(14)$	$-6.1(4.2)$
$\Delta m_{\text {HF-1 }}$	$45.9(1.8)$	$48(1)$	

