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Nf mass-degenerate O(a) improved Wilson quarks

O(a) improved lattice action, bare parameters m0 and g2
0 :

S = a4
∑
x

ψ(x)(DW +m0)ψ(x) +
1
g2
0

(
g2
0 × Sg

)︸ ︷︷ ︸
g0-indep.

DW =
∑
µ

{
1
2 (∇µ +∇∗µ)γµ − a∇∗µ∇µ

}
+ ia csw(g2

0)
∑
µ,ν

σµν F̂µν(x)

O(a) improvement at non-vanishing masses requires the rescaling of the bare
mass and coupling (mq = m0 −mcr(g0)):

g̃2
0 = g2

0(1 + bg(g2
0)amq), m̃q = mq(1 + bm(g2

0)amq)

Renormalized & on-shell O(a) improved composite operators, e.g. axial current
and density:

(AR)aµ = ZA(g̃2
0)(1 + bA(g2

0)amq)
{
Aaµ + cA(g2

0)∂̃µPa
}

(PR)a = ZP(g̃2
0 , aµ)(1 + bP(g2

0)amq)Pa

⇒ On-shell O(a) improvement requires csw, bg, bm, cA, bA, bP, . . .
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Relevance of bg, Decoupling strategy [ALPHA 2019-22]

Simulations at fixed a as mq is varied ⇔ fix g̃2
0 , requires bg!

bg is known to 1-loop order [Sommer, S. ’95]: bg = 0.0120×Nfg
2
0 + O(g4

0) ;
sufficient for light & strange quark masses, for which e.g. amq < 0.03.

Non-perturbative estimates needed for heavier quarks!

Decoupling strategy: Relate Λ-parameters of Nf = 3 and Nf = 0 QCD by
simultaneously decoupling Nf = 3 heavy quarks:

Trace a (finite volume) GF coupling as function of M , up to M = O(10) GeV;

Lattice spacings such that aM < 0.4− 0.5; (amq smaller by factor ≈ 1.5− 2)

Result [ALPHA ’22] (compatible with [ALPHA ’17], error of same size but largely
independent!)

Λ(3)
MS

= 336(10)(6)bg (3)Γ̂m
MeV = 336(12)MeV ⇒ αs(mZ) = 0.11823(84)

⇒ bg-error estimated assuming a 100% uncertainty on 1-loop value.
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Strategies to determine bg non-perturbatively; Chiral Ward identities

bg can be related to the O(a) improvement of the flavour singlet scalar density
S0 = ψψ: [Bhattacharya et al, ’05]

S0
R = ZS0 (1 + bS0amq)

[
S0 + cSa

−3 + dSa tr {FµνFµν}
]

Basic argument:

Differentiating a gradient flow observable with respect to the renormalized O(a)
improved quark mass and coupling generates insertion of an O(a) improved
scalar and action density, respectively.

Changing variables to unimproved quark mass and coupling allows to identify
the counterterms such that

bg = −2g2
0dS ,

provided the O(a) counterterm takes the particular form dictated by the lattice
action:

tr(FµνFµν)→ −2g2
0
(
Lg − g2

0 × ia
4 c
′
sw(g2

0)ψσµνFµνψ
)
,

Lg denotes the gauge action density and the SW-term contribution was missing
in earlier papers.

Chiral Ward identities can now be applied to massless (connected) correlation
functions, e.g. in the SF [S.’98, Münster coll. ’22].
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Alternative: Physical vs. cutoff mq-dependence

Consider QCD in a finite space-time volume, no boundaries, gradient flow observable
(e.g. GF coupling):

Absence of spontaneous symmetry breaking; functional integral well defined
with exact chiral symmetry in GW regularization

⇒ Nf even: functional integral is even function of m; physical quark mass effects
are function of m2!

⇒ Nf odd: no definite m-parity, however no first order terms in m, since
[Dalla Brida, Giusti, Pepe, ’20]

ψ → exp(iπγ5/Nf)ψ, ψ → ψ exp(iπγ5/Nf)

has unit Jacobian and transforms the mass term ψψ → ψ exp(2iπ/Nfγ5)ψ with
parity-conserving part cos(2π/Nf)× ψψ

Expanding in powers of m shows that the linear term in m must vanish.

Conclusion: For small masses, physical quark mass effects are O(m2), while the bg
term muliplies a term linear in m!
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Explicit condition for bg

We consider a gradient flow observable 〈Ogf〉 in a finite volume, as a function of the
renormalized quark mass m.

In the continuum limit:

〈Ogf〉 = A+O(m2) ⇒
∂〈Ogf〉
∂m

∣∣∣
m=0

= 0

On the lattice m is proportional to m̃q;

Reformulate in terms of bare parameters;

∂S

∂m̃q

∣∣∣∣
g̃2

0

= (1− 2bmamq)

(
∂S

∂mq

∣∣∣∣
g2

0

− ag2
0bg

∂S

∂g2
0

∣∣∣∣
mq

)
+ O(a2)

Setting mq = 0 this translates to

∂〈Ogf〉
∂m̃q

∣∣∣∣
g̃2

0

=
∂〈Ogf〉
∂mq

∣∣∣∣
g2

0

− ag2
0bg

∂〈Ogf〉
∂g2

0

∣∣∣∣
mq

+ O(a2)

Requiring this to vanish, up to O(a2):

bg =
∂〈Ogf〉
∂amq

∣∣∣∣
g0;mq=0

{
g2
0
∂〈Ogf〉
∂g2

0

∣∣∣∣
mq=0

}−1
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A perturbative test
Consider 〈Ogf〉 → ḡ2, the SF coupling with χSF b.c’s

Presence of boundary & absence of gradient flow: no problem in this case.

define z = mRL and expand perturbatively

ḡ2(L, z) = g2
0+p1(L/a, z)g4

0+O(g6
0) = g̃2

0+
(
p1(L/a, z)− amqb

(1)
g

)
g̃4
0+O(g̃6

0)

To this order mR = m̃q = mq + O(m2
q):

Asymptotic expansion for small a/L:

p1 ∼ r0(z) + s0 ln(L/a) +
a

L
r1(z) + O(a2);

Expect r0(z) = r0(0) + O(z2)

∂ḡ2

∂z

∣∣∣∣
z=0

=
a

L

(
r′1(0)− b(1)

g

)
g̃2
0 + O(a2, g̃4

0) ⇒ b
(1)
g = r′1(0)

Result from asymptotic analyis reproduces the known 1-loop result
b
(1)
g = 0.0120Nf

The old result was obtained with SF b.c.’s but then r0(z) = r0(0) + O(z), ⇒
extra term from physical quark mass dependence!
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A perturbative test cont’d

Test formula for dependence on bare parameters:

∂ḡ2

∂amq

∣∣∣∣
g2

0 ,mq=0

= g4
0

∂p1

∂amq

∣∣∣∣
mq=0

+ . . . ,
∂ḡ2

∂g2
0

∣∣∣∣
mq=0

= 1 + 2p1g
2
0 + . . .

⇒ bg = b
(1)
g g2

0 + O(g4
0), b

(1)
g =

∂p1

∂amq

∣∣∣∣
mq=0

=
L

a
r′0(z)

∣∣∣
z=0

+ r′1(0)

Numerical results, using the standard SF coupling with χSF b.c.’s, m0 = 0, θ = π/2

b
(1),est
g

0.0120Nf

∣∣∣∣
L/a

= 0.8992, 0.9125, 0.9213, 0.9405, 0.9477, for L/a = 16, 24, 30, 48, 60

Corrections are O(a); relative effects seem large but bg is numerically small!

L/a× r′0(z) ∝ z × L/a: requires to control z = 0 up to effects O(a2) (requires
cA in O(a) improved PCAC mass)

χSF b.c.’s only available for Nf even; setup with periodic or twisted periodic
(Nf = 3) boundary conditions preferred.
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Conclusions

At quark mass values that are not very small in lattice units, a non-perturbative
determination of bg becomes important

Decoupling project by the ALPHA collaboration: physical MRGI-values up to
O(10 GeV) data used for continuum extrapolation has aM < 0.5

The O(am) improvement coefficient bg can be determined either
1 by chiral WI’s for the flavour singlet scalar density (albeit with lattice action

density including SW-term!) or
2 by separating the physical mass dependence (quadradic in m) from the cutoff

dependence (linear in m)

ALPHA collaboration: determination of bg at β-values used in ALPHA
decoupling project

periodic/anti-periodic boundary condition in all directions for gauge/fermion
fields

⇒ for preliminary results cf. poster by Mattia Dalla Brida this evening

Thank you!


