$\mathrm{O}(a)$ improved Wilson quarks and the $\mathrm{O}(\mathrm{am})$ rescaling of g_{0}^{2}

Mattia Dalla Brida ${ }^{a}$, Roman Höllwieser ${ }^{b}$, Francesco Knechtli ${ }^{b}$ Tomasz Korzec ${ }^{b}$, Alberto Ramos ${ }^{d}$, Stefan Sint ${ }^{e}$, Rainer Sommer ${ }^{c, f}$
${ }^{a}$ CERN, Geneva, Switzerland
${ }^{b}$ Bergische Universität Wuppertal, Germany
${ }^{c}$ NIC-DESY, Zeuthen, Germany
${ }^{d}$ IFIC, Valencia, Spain
${ }^{e}$ Trinity College Dublin, Ireland
${ }^{f}$ Humboldt Universität, Berlin, Germany

Lattice '23, Fermilab, 1 August 2023

Outline

- $\mathrm{O}(a)$ improved Wilson quarks
- The rôle of b_{g}
- Strategies to determine b_{g} non-perturbatively
- A perturbative test
- Conclusions

N_{f} mass-degenerate $\mathrm{O}(a)$ improved Wilson quarks

- $\mathrm{O}(a)$ improved lattice action, bare parameters m_{0} and g_{0}^{2} :

$$
\begin{aligned}
S & =a^{4} \sum_{x} \bar{\psi}(x)\left(D_{\mathrm{W}}+m_{0}\right) \psi(x)+\frac{1}{g_{0}^{2}} \underbrace{\left(g_{0}^{2} \times S_{\mathrm{g}}\right)}_{g_{0} \text {-indep. }} \\
D_{\mathrm{W}} & =\sum_{\mu}\left\{\frac{1}{2}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right) \gamma_{\mu}-a \nabla_{\mu}^{*} \nabla_{\mu}\right\}+i a c_{\mathrm{sW}}\left(g_{0}^{2}\right) \sum_{\mu, \nu} \sigma_{\mu \nu} \hat{F}_{\mu \nu}(x)
\end{aligned}
$$

- $\mathrm{O}(a)$ improvement at non-vanishing masses requires the rescaling of the bare mass and coupling ($m_{\mathrm{q}}=m_{0}-m_{\mathrm{cr}}\left(g_{0}\right)$):

$$
\tilde{g}_{0}^{2}=g_{0}^{2}\left(1+b_{\mathrm{g}}\left(g_{0}^{2}\right) a m_{\mathrm{q}}\right), \quad \widetilde{m}_{\mathrm{q}}=m_{\mathrm{q}}\left(1+b_{\mathrm{m}}\left(g_{0}^{2}\right) a m_{\mathrm{q}}\right)
$$

- Renormalized \& on-shell $\mathrm{O}(a)$ improved composite operators, e.g. axial current and density:

$$
\begin{aligned}
\left(A_{\mathrm{R}}\right)_{\mu}^{a} & =Z_{\mathrm{A}}\left(\tilde{g}_{0}^{2}\right)\left(1+b_{\mathrm{A}}\left(g_{0}^{2}\right) a m_{\mathrm{q}}\right)\left\{A_{\mu}^{a}+c_{\mathrm{A}}\left(g_{0}^{2}\right) \tilde{\partial}_{\mu} P^{a}\right\} \\
\left(P_{\mathrm{R}}\right)^{a} & =Z_{\mathrm{P}}\left(\tilde{g}_{0}^{2}, a \mu\right)\left(1+b_{\mathrm{P}}\left(g_{0}^{2}\right) a m_{\mathrm{q}}\right) P^{a}
\end{aligned}
$$

\Rightarrow On-shell $\mathrm{O}(a)$ improvement requires $c_{\mathrm{sw}}, b_{\mathrm{g}}, b_{\mathrm{m}}, c_{\mathrm{A}}, b_{\mathrm{A}}, b_{\mathrm{P}}, \ldots$

Relevance of b_{g}, Decoupling strategy [

- Simulations at fixed a as m_{q} is varied \Leftrightarrow fix \tilde{g}_{0}^{2}, requires b_{g} !
- b_{g} is known to 1-loop order [Sommer, S. '95]: $b_{\mathrm{g}}=0.0120 \times N_{\mathrm{f}} g_{0}^{2}+\mathrm{O}\left(g_{0}^{4}\right)$; sufficient for light \& strange quark masses, for which e.g. $a m_{\mathrm{q}}<0.03$.
- Non-perturbative estimates needed for heavier quarks!

Decoupling strategy: Relate Λ-parameters of $N_{\mathrm{f}}=3$ and $N_{\mathrm{f}}=0$ QCD by simultaneously decoupling $N_{\mathrm{f}}=3$ heavy quarks:

- Trace a (finite volume) GF coupling as function of M, up to $M=\mathrm{O}(10) \mathrm{GeV}$;
- Lattice spacings such that $a M<0.4-0.5 ;\left(a m_{\mathrm{q}}\right.$ smaller by factor $\left.\approx 1.5-2\right)$
- Result [ALPHA '22] (compatible with [ALPHA '17], error of same size but largely independent!)

$$
\Lambda_{\overline{\mathrm{MS}}}^{(3)}=336(10)(6)_{b_{\mathrm{g}}}(3)_{\hat{\Gamma}_{m}} \mathrm{MeV}=336(12) \mathrm{MeV} \quad \Rightarrow \quad \alpha_{s}\left(m_{Z}\right)=0.11823(84)
$$

$\Rightarrow b_{\mathrm{g}}$-error estimated assuming a 100% uncertainty on 1-loop value.

contributions to error ${ }^{2}$

Strategies to determine b_{g} non-perturbatively; Chiral Ward identities

b_{g} can be related to the $\mathrm{O}(a)$ improvement of the flavour singlet scalar density $S^{0}=\bar{\psi} \psi:$ [Bhattacharya et al, '05]

$$
S_{\mathrm{R}}^{0}=Z_{S^{0}}\left(1+b_{\mathrm{S}^{0}} a m_{\mathrm{q}}\right)\left[S^{0}+c_{S} a^{-3}+d_{S} a \operatorname{tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}\right]
$$

Basic argument:

- Differentiating a gradient flow observable with respect to the renormalized $\mathrm{O}(a)$ improved quark mass and coupling generates insertion of an $\mathrm{O}(\mathrm{a})$ improved scalar and action density, respectively.
- Changing variables to unimproved quark mass and coupling allows to identify the counterterms such that

$$
b_{\mathrm{g}}=-2 g_{0}^{2} d_{S}
$$

- provided the $\mathrm{O}(a)$ counterterm takes the particular form dictated by the lattice action:

$$
\operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right) \rightarrow-2 g_{0}^{2}\left(\mathcal{L}_{g}-g_{0}^{2} \times \frac{i a}{4} c_{\mathrm{sw}}^{\prime}\left(g_{0}^{2}\right) \bar{\psi} \sigma_{\mu \nu} F_{\mu \nu} \psi\right)
$$

- \mathcal{L}_{g} denotes the gauge action density and the SW-term contribution was missing in earlier papers.
- Chiral Ward identities can now be applied to massless (connected) correlation functions, e.g. in the SF [S.'98, Münster coll. '22].

Alternative: Physical vs. cutoff m_{q}-dependence

Consider QCD in a finite space-time volume, no boundaries, gradient flow observable (e.g. GF coupling):

- Absence of spontaneous symmetry breaking; functional integral well defined with exact chiral symmetry in GW regularization
$\Rightarrow N_{\mathrm{f}}$ even: functional integral is even function of m; physical quark mass effects are function of m^{2} !
$\Rightarrow \quad N_{\mathrm{f}}$ odd: no definite m-parity, however no first order terms in m, since [Dalla Brida, Giusti, Pepe, '20]

$$
\psi \rightarrow \exp \left(i \pi \gamma_{5} / N_{\mathrm{f}}\right) \psi, \quad \bar{\psi} \rightarrow \bar{\psi} \exp \left(i \pi \gamma_{5} / N_{\mathrm{f}}\right)
$$

has unit Jacobian and transforms the mass term $\bar{\psi} \psi \rightarrow \bar{\psi} \exp \left(2 i \pi / N_{\mathrm{f}} \gamma_{5}\right) \psi$ with parity-conserving part $\cos \left(2 \pi / N_{\mathrm{f}}\right) \times \bar{\psi} \psi$

- Expanding in powers of m shows that the linear term in m must vanish.

Conclusion: For small masses, physical quark mass effects are $\mathrm{O}\left(m^{2}\right)$, while the b_{g} term muliplies a term linear in m !

Explicit condition for b_{g}

We consider a gradient flow observable $\left\langle O_{\mathrm{gf}}\right\rangle$ in a finite volume, as a function of the renormalized quark mass m.

- In the continuum limit:

$$
\left\langle O_{\mathrm{gf}}\right\rangle=A+\left.O\left(m^{2}\right) \quad \Rightarrow \quad \frac{\partial\left\langle O_{\mathrm{gf}}\right\rangle}{\partial m}\right|_{m=0}=0
$$

- On the lattice m is proportional to $\widetilde{m}_{\mathrm{q}}$;
- Reformulate in terms of bare parameters;

$$
\left.\frac{\partial S}{\partial \widetilde{m}_{\mathrm{q}}}\right|_{\tilde{g}_{0}^{2}}=\left(1-2 b_{\mathrm{m}} a m_{\mathrm{q}}\right)\left(\left.\frac{\partial S}{\partial m_{\mathrm{q}}}\right|_{g_{0}^{2}}-\left.a g_{0}^{2} b_{\mathrm{g}} \frac{\partial S}{\partial g_{0}^{2}}\right|_{m_{\mathrm{q}}}\right)+\mathrm{O}\left(a^{2}\right)
$$

- Setting $m_{\mathrm{q}}=0$ this translates to

$$
\left.\frac{\partial\left\langle O_{\mathrm{gf}}\right\rangle}{\partial \widetilde{m}_{\mathrm{q}}}\right|_{\tilde{g}_{0}^{2}}=\left.\frac{\partial\left\langle O_{\mathrm{gf}}\right\rangle}{\partial m_{\mathrm{q}}}\right|_{g_{0}^{2}}-\left.a g_{0}^{2} b_{\mathrm{g}} \frac{\partial\left\langle O_{\mathrm{gf}}\right\rangle}{\partial g_{0}^{2}}\right|_{m_{\mathrm{q}}}+\mathrm{O}\left(a^{2}\right)
$$

- Requiring this to vanish, up to $\mathrm{O}\left(a^{2}\right)$:

$$
b_{\mathrm{g}}=\left.\frac{\partial\left\langle O_{\mathrm{gf}}\right\rangle}{\partial a m_{\mathrm{q}}}\right|_{g_{0} ; m_{\mathrm{q}}=0}\left\{\left.g_{0}^{2} \frac{\partial\left\langle O_{\mathrm{gf}}\right\rangle}{\partial g_{0}^{2}}\right|_{m_{\mathrm{q}}=0}\right\}^{-1}
$$

A perturbative test

Consider $\left\langle O_{\mathrm{gf}}\right\rangle \rightarrow \bar{g}^{2}$, the SF coupling with $\chi \mathrm{SF}$ b.c's

- Presence of boundary \& absence of gradient flow: no problem in this case.
- define $z=m_{\mathrm{R}} L$ and expand perturbatively

$$
\bar{g}^{2}(L, z)=g_{0}^{2}+p_{1}(L / a, z) g_{0}^{4}+\mathrm{O}\left(g_{0}^{6}\right)=\tilde{g}_{0}^{2}+\left(p_{1}(L / a, z)-a m_{\mathrm{q}} b_{\mathrm{g}}^{(1)}\right) \tilde{g}_{0}^{4}+\mathrm{O}\left(\tilde{g}_{0}^{6}\right)
$$

- To this order $m_{\mathrm{R}}=\widetilde{m}_{\mathrm{q}}=m_{\mathrm{q}}+\mathrm{O}\left(m_{\mathrm{q}}^{2}\right)$:
- Asymptotic expansion for small a / L :

$$
p_{1} \sim r_{0}(z)+s_{0} \ln (L / a)+\frac{a}{L} r_{1}(z)+\mathrm{O}\left(a^{2}\right)
$$

- Expect $r_{0}(z)=r_{0}(0)+\mathrm{O}\left(z^{2}\right)$

$$
\left.\frac{\partial \bar{g}^{2}}{\partial z}\right|_{z=0}=\frac{a}{L}\left(r_{1}^{\prime}(0)-b_{\mathrm{g}}^{(1)}\right) \tilde{g}_{0}^{2}+\mathrm{O}\left(a^{2}, \tilde{g}_{0}^{4}\right) \quad \Rightarrow \quad b_{\mathrm{g}}^{(1)}=r_{1}^{\prime}(0)
$$

- Result from asymptotic analyis reproduces the known 1-loop result $b_{\mathrm{g}}^{(1)}=0.0120 N_{\mathrm{f}}$
- The old result was obtained with SF b.c.'s but then $r_{0}(z)=r_{0}(0)+\mathrm{O}(z), \Rightarrow$ extra term from physical quark mass dependence!

A perturbative test cont'd

Test formula for dependence on bare parameters:

$$
\begin{aligned}
& \left.\frac{\partial \bar{g}^{2}}{\partial a m_{\mathrm{q}}}\right|_{g_{0}^{2}, m_{\mathrm{q}}=0}=\left.g_{0}^{4} \frac{\partial p_{1}}{\partial a m_{\mathrm{q}}}\right|_{m_{\mathrm{q}}=0}+\ldots,\left.\quad \frac{\partial \bar{g}^{2}}{\partial g_{0}^{2}}\right|_{m_{\mathrm{q}}=0}=1+2 p_{1} g_{0}^{2}+\ldots \\
& \Rightarrow \quad b_{\mathrm{g}}=b_{\mathrm{g}}^{(1)} g_{0}^{2}+\mathrm{O}\left(g_{0}^{4}\right), \quad b_{\mathrm{g}}^{(1)}=\left.\frac{\partial p_{1}}{\partial a m_{\mathrm{q}}}\right|_{m_{\mathrm{q}}=0}=\left.\frac{L}{a} r_{0}^{\prime}(z)\right|_{z=0}+r_{1}^{\prime}(0)
\end{aligned}
$$

Numerical results, using the standard SF coupling with χ SF b.c.'s, $m_{0}=0, \theta=\pi / 2$

$$
\left.\frac{b_{\mathrm{g}}^{(1), \text { est }}}{0.0120 N_{\mathrm{f}}}\right|_{L / a}=0.8992,0.9125,0.9213,0.9405,0.9477, \quad \text { for } \quad L / a=16,24,30,48,60
$$

- Corrections are $\mathrm{O}(a)$; relative effects seem large but b_{g} is numerically small!
- $L / a \times r_{0}^{\prime}(z) \propto z \times L / a$: requires to control $z=0$ up to effects $\mathrm{O}\left(a^{2}\right)$ (requires c_{A} in $\mathrm{O}(a)$ improved PCAC mass)
- χ SF b.c.'s only available for N_{f} even; setup with periodic or twisted periodic ($N_{\mathrm{f}}=3$) boundary conditions preferred.

Conclusions

- At quark mass values that are not very small in lattice units, a non-perturbative determination of b_{g} becomes important
- Decoupling project by the ALPHA collaboration: physical M_{RGI}-values up to $\mathrm{O}(10 \mathrm{GeV})$ data used for continuum extrapolation has $a M<0.5$
- The $\mathrm{O}(\mathrm{am})$ improvement coefficient b_{g} can be determined either
(1) by chiral WI's for the flavour singlet scalar density (albeit with lattice action density including SW-term!) or
(2) by separating the physical mass dependence (quadradic in m) from the cutoff dependence (linear in m)
- ALPHA collaboration: determination of b_{g} at β-values used in ALPHA decoupling project
- periodic/anti-periodic boundary condition in all directions for gauge/fermion fields
\Rightarrow for preliminary results cf. poster by Mattia Dalla Brida this evening

> Thank you!

