
Fast Partitioning of Pauli Strings into Commuting
Families

for Optimal Expectation Value Measurements of
Dense Operators

Nouman Butt, Andrew Lytle, Ben Reggio, Patrick Draper
Department of Physics, University of Illinois, Urbana-Champaign

The Pauli strings Pi appearing in the decomposition of an m-qubit operator H,

H =
4m∑
i=1

ciPi (1)

where Pi is a tensor product of Pauli matrices, for example
P = σx ⊗ 1⊗ 1⊗ σy ⊗ . . .⊗ σz ≡ XIIY . . . Z , (2)

can be grouped into commuting families, reducing the number of quantum circuits needed to
measure the expectation value of the operator. We detail an algorithm to completely partition
the full set of Pauli strings acting on any number of qubits into the minimal number of sets of
commuting families, and we provide python code to perform the partitioning. The partitioning
method scales linearly with the size of the set of Pauli strings and it naturally provides a fast
method of diagonalizing the commuting families with quantum gates. We provide a package
that integrates the partitioning into Qiskit, and use this to benchmark the algorithm with
dense Hamiltonians, such as those that arise in matrix quantum mechanics models, on IBM
hardware. We demonstrate computational speedups close to the theoretical limit of (3/2)m
relative to qubit-wise commuting groupings, for m = 2, . . . , 6 qubits [1].

The cost of a quantum computation depends on several aspects of the computation, including
the number of required quantum circuits, the depth of the circuits, and the number of times
the same circuits have to be run in order to achieve a level of confidence in the results. For
computations involving expectation value measurements, e.g. variational quantum eigensolver
(VQE) problems, the naïve approach for a generic operator produces O(4m) circuits for m
qubits (one for each Pauli string in the operator decomposition). In the NISQ era, the
capacity to share the computational burden between classical and quantum computers in an
optimal way will be crucial. This is a classical problem, the solution of which can be used to
reduce the number of circuits needed to measure an expectation value on a quantum device.
An optimal solution partitions all Pauli strings into 2m + 1 sets where each set has size
2m − 1. This partition reduces the number of circuits from 4m (3m), in the naïve (qubit-wise
commuting) case, down to 2m + 1.

Properties of Pauli Strings
A family is defined as a maximally commuting set of Pauli strings. All families have the same
size 2m − 1 and can be generated from m generating strings. In other words we only need m
generating strings to characterize a family since all other strings in the family are all possible
products of these m generating strings. We start with the two canonical families, namely z
family with strings of characters Is and Zs and x family with characters Is and Xs. The
2-qubit solution is simple:

X ⊗ 1 1⊗X X ⊗X
Z ⊗ 1 Y ⊗ 1 Z ⊗X Y ⊗X
1⊗ Z X ⊗ Z 1⊗ Y X ⊗ Y
Z ⊗ Z Y ⊗ Z Z ⊗ Y Y ⊗ Y

This table contain all the strings for the 2-qubit case and the families can be read off by picking
one generator for the new family from each row and each column. The canonical x and z
families can be converted into a Z2-valued vector space V with the generating strings playing
the role of basis vectors for V . Each family is indexed by a generator matrix A which encodes
the commutativity of the strings in that family and furnishes a unique permutation on the x
family.

Properties of matrix A
The matrix A is a Z2 valuedm×m symmetric matrix and has period given by AN−1 = 1 where
N = 2m. On the generating strings(basis vectors vi ∈ V) the matrix A act as a permutation:

Avi = vP (i) (3)

For each family we have a distinct matrix A which permutes the x family generatring strings
into a new set of generating strings. This set of matrices which indices the families, forms a
Singer cycle of the form {A,A2, A3,AN = A}. Since each matrix realizes a distinct
permutation we need to make sure that the ansatz we have for the matrix should have the
right characteristics:
• Ai is symmetric
• Ai − Aj is invertible
In order to generate the set of matrices A we use matrix representation of the Galois field
GF (2m). This representation leads to a set of matrices {C,C2, ...CN−1} which has the
Singer cycle property [2]. However these matrices requires symmetrization which is done using
a separate method. With a set of generator matrices at hand we can use them to generate
permutations on x family and obtain a new set of unique x family generating strings. We can
take the product of these x family generating strings with the z family fixed, and produce
generating strings for a new family.

Diagonalizing to z family
With a unique solution with 2m+1 families, we need to run only O(2m) circuits rather than 4m.
The computational basis which is used for measurement is the eigen-basis for the z family. For
each family we need to find a unitary transformation that can transform the strings in the family
to strings in z family modulo an overall sign. The generating strings of the canonical x family
can be used to find the unitary transformation U = exp(iπ4

∑
m xm) where xm the generating

strings. The overall sign can be evaluated by keeping track of sign change accumulated for
each generating string. Surprisingly the set of matrices {A,A2, A3, ...} can be used to find the
diagonalizing strings.

For the i−th family given by Ai the diagonalizing strings can be found via computing (Ai)N
2 .

(Ai)N/2 =

Ai/2 if i mod 2 = 0
A

N+i−1
2 if i mod 2 = 1

 . (4)

The set of unitary transformation that diagonalizes all family to the canonical z family leads
to additional circuit depth which is approximately quadratic in the number of qubits. In
QWC(qubit-wise commuting) families the circuit depth only increases by a unit.

Integrating into QISKIT
We developed a python package for generating the optimal solution and the diagonalizing cir-
cuits [4]. We also developed a QISKIT extension dense_ev [3] which contain two classes. The
first class DenseGrouper works as an analog of native QISKIT class AbelianGrouper (which
generates qubit-wise commuting solutions) and the second class DensePauliExpectation
builds upon the native QISKIT PauliExpectation and contains the method to compute
expectation values on hardware and quantum simulators. Both packages are publicly available.

Computational Cost
We compare the computational cost of qubit-wise commuting (QWC) vs. optimal grouping
using a simple model for the circuit runtime, τ = τover + τcirc(D), where τover is the overhead
time and τcirc depends on the depth D of the circuit needed to generate the state |ψ〉 in the
desired expectation value 〈ψ|H|ψ〉. For a prepared m-qubit state of depth D we have

τQWC
τoptimal

=
3m

τover + τcirc(D + 1)


(2m + 1)
τover + τcirc(D + am2)

 . (5)

If the circuit overhead is much greater than the circuit runtimes (τover >> τcirc), or the state
circuit depth is much greater than the average diagonalization circuit (D >> am2), the runtime
improvement will be close to the ideal (3/2)m.

Numerical Results

In the figure above we show the ratios of the computational times between different methods.
The circuits ran on ibmq_quito using both dense (optimal) and abelian (QWC) grouping
methods for 3 to 5 qubits. The ideal speedup factor is the ratio of the number of circuits, 3m

2m+1
shown by dotted lines. The states measured are constructed using EfficientSU2, and the
reps parameter is varied from 1 to 5 to show the effects of increased circuit depth.

2 3 4 5 6
n_qubits

0

500

1000

1500

2000

fa

m
ilie

s

n_cut
n_abelian
n_dense

2 3 4 5 6
n_qubits

100

101

n_
fa

m
ilie

s/
n_

de
ns

e

n_cut
n_abelian
n_dense
0.5*2**m
0.43*1.54**m

On the left figure we show the number of family groupings generated by different grouping
methods for the A+

1 (g = 0.8) femtouniverse Hamiltonian [5], as a function of number of qubits
m. We compare the naïve decomposition into individual Pauli strings, the AbelianGrouper,
and the dense grouping. On the right we have the same data but plotted as a ratio to the
number of families from the dense grouping (2m + 1), showing the improvement factor of the
dense grouping compared to measuring individual Pauli strings (blue) and grouping generated by
AbelianGrouper (orange). The dotted lines give an indication of the exponential improvement
observed using the dense vs. other methods.

References

[1] arXiv:2305.11847
[2] Andrew Jena (2019). Partitioning Pauli Operators: in Theory and in Practice. UWSpace.

http://hdl.handle.net/10012/15017
[3] https://github.com/Benjreggio/Psfam
[4] https://github.com/atlytle/dense-ev
[5] arXiv:2211.10870

