

The dependence of observables on action parameters

[arXiv:2307.15406]

Guilherme Catumba Alberto Ramos; Bryan Zaldívar

IFIC – Valencia

August 2, 2023

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\boldsymbol{\theta})}$$

$$\{x^{\alpha}\}_{\alpha=1}^{N} \sim e^{-S(x;\theta)}$$

$$\langle f(\theta) \rangle_{S_{\theta}} = \frac{1}{N} \sum_{\alpha=1}^{N} f(x^{\alpha};\theta)$$

$$\{x^{\alpha}\}_{\alpha=1}^{N} \sim e^{-S(x;\theta)}$$
$$\langle f(\theta) \rangle_{S_{\theta}} = \frac{1}{N} \sum_{\alpha=1}^{N} f(x^{\alpha};\theta)$$
$$\frac{\partial}{\partial \theta_{i}} \langle f(x;\theta) \rangle_{S_{\theta}}$$
$$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \langle f(x;\theta) \rangle_{S_{\theta}}$$
$$\dots$$

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\boldsymbol{\theta})}$$

$$\langle f(\boldsymbol{\theta}) \rangle_{S_{\boldsymbol{\theta}}} = \frac{1}{N} \sum_{\alpha=1}^{N} f(x^{\alpha}; \boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_i} \langle f(x;\theta) \rangle_{S_{\theta}}$$
$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \langle f(x;\theta) \rangle_{S_{\theta}}$$

. . .

Conventional Automatic Differentiation ruled out due to Stochastic elements

$$\{x^{\alpha}\}_{\alpha=1}^{N} \sim e^{-S(x;\boldsymbol{\theta})}$$

$$\langle f(\boldsymbol{\theta}) \rangle_{S_{\boldsymbol{\theta}}} = \frac{1}{N} \sum_{\alpha=1}^{N} f(x^{\alpha}; \boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_i} \langle f(x; \theta) \rangle_{S_{\theta}}$$
$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \langle f(x; \theta) \rangle_{S_{\theta}}$$

. . .

Conventional Automatic Differentiation ruled out due to Stochastic elements

- Dependence on bare couplings
 - Reweighting
 - QCD+QED ∂_{e^2}

$$\{x^{\alpha}\}_{\alpha=1}^{N} \sim e^{-S(x;\boldsymbol{\theta})}$$

$$\langle f(\boldsymbol{\theta}) \rangle_{S_{\boldsymbol{\theta}}} = \frac{1}{N} \sum_{\alpha=1}^{N} f(x^{\alpha}; \boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_i} \langle f(x; \theta) \rangle_{S_{\theta}}$$
$$\frac{\partial}{\partial \theta_i} \langle f(x; \theta) \rangle_{S_{\theta}}$$

$$\frac{\partial}{\partial \theta_i \partial \theta_j} \left\langle f(x; \theta) \right\rangle_{S_0}$$

Conventional Automatic Differentiation ruled out due to Stochastic elements

- Dependence on bare couplings
 - Reweighting
 - QCD+QED ∂_{e^2}
- P Optimization problems

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\boldsymbol{\theta})}$$

$$\langle f(\boldsymbol{\theta}) \rangle_{S_{\boldsymbol{\theta}}} = \frac{1}{N} \sum_{\alpha=1}^{N} f(x^{\alpha}; \boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_i} \left\langle f(x; \theta) \right\rangle_{S_\theta}$$

$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \langle f(x; \theta) \rangle_{S_{\theta}}$$

Conventional Automatic Differentiation ruled out due to Stochastic elements

- Dependence on bare couplings
 - Reweighting
 - QCD+QED ∂_{e^2}
- Optimization problems
- Bayesian inference Hyperparameters

[G.C., A. Ramos, B. Zaldivar, arXiv:2307.15406]

Power series $\mathcal{O}(\varepsilon^K)$

$$\tilde{x} \equiv x_0 + x_1\varepsilon + x_2\varepsilon^2 + \dots + x_K\varepsilon^K$$

Power series $\mathcal{O}(\varepsilon^K)$

. . .

$$\tilde{x} \equiv x_0 + x_1\varepsilon + x_2\varepsilon^2 + \dots + x_K\varepsilon^K$$

Define operations & elementary functions – exact at each order

$$\tilde{x}\tilde{y} = x_0y_0 + (x_0y_1 + x_1y_0)\varepsilon + (x_0y_2 + 2x_1y_1 + x_2y_0)\varepsilon^2 + \dots$$
$$\exp(\tilde{x}) = e^{x_0} + e^{x_0}x_1\varepsilon + e^{x_0}(x_1^2/2 + x_2)\varepsilon^2 + \dots$$

Power series $\mathcal{O}(\varepsilon^K)$

. . .

$$\tilde{x} \equiv x_0 + x_1\varepsilon + x_2\varepsilon^2 + \dots + x_K\varepsilon^K$$

Define operations & elementary functions – exact at each order

$$\tilde{x}\tilde{y} = x_0y_0 + (x_0y_1 + x_1y_0)\varepsilon + (x_0y_2 + 2x_1y_1 + x_2y_0)\varepsilon^2 + \dots$$
$$\exp(\tilde{x}) = e^{x_0} + e^{x_0}x_1\varepsilon + e^{x_0}(x_1^2/2 + x_2)\varepsilon^2 + \dots$$

Evaluate function at $\tilde{x} = x_0 + \varepsilon$ (Taylor theorem)

$$f(\tilde{x}) = f(x_0) + f'(x_0)\varepsilon + \frac{1}{2}f''(x_0)\varepsilon^2$$

Power series $\mathcal{O}(\varepsilon^K)$

$$\tilde{x} \equiv x_0 + x_1\varepsilon + x_2\varepsilon^2 + \dots + x_K\varepsilon^K$$

Define operations & elementary functions – exact at each order

$$\tilde{x}\tilde{y} = x_0y_0 + (x_0y_1 + x_1y_0)\varepsilon + (x_0y_2 + 2x_1y_1 + x_2y_0)\varepsilon^2 + \dots$$
$$\exp(\tilde{x}) = e^{x_0} + e^{x_0}x_1\varepsilon + e^{x_0}(x_1^2/2 + x_2)\varepsilon^2 + \dots$$

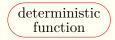
Evaluate function at $\tilde{x} = x_0 + \varepsilon$ (Taylor theorem)

$$f(\tilde{x}) = f(x_0) + f'(x_0)\varepsilon + \frac{1}{2}f''(x_0)\varepsilon^2$$

Chain rule

. . .

Expansion in multiple variables!



Samples

Expectation values w.r.t

 $\{x^{\alpha}\}_{lpha=1}^N \sim e^{-S(x;\theta)}$

 $e^{-S(x;\theta')}$

Reweighting & Automatic Differentiation

Samples Expectation values w.r.t $\{x^{\alpha}\}_{\alpha=1}^{N} \sim e^{-S(x;\theta)} \qquad e^{-S(x;\theta')}$

Conventional Reweighting

$$\left\langle f(x)\right\rangle_{S'} = \frac{\left\langle e^{S-S'}f(x)\right\rangle_S}{\left\langle e^{S-S'}\right\rangle_S}$$

Reweighting & Automatic Differentiation

Conventional Reweighting

$$\left\langle f(x)\right\rangle _{S^{\prime}}=\frac{\left\langle e^{S-S^{\prime}}f(x)\right\rangle _{S}}{\left\langle e^{S-S^{\prime}}\right\rangle _{S}}$$

Introduce truncated polynomials with $\tilde{\theta} = \theta + \varepsilon$

$$w^{\alpha} = e^{S(x,\theta) - S(x,\tilde{\theta})} = 1 + (\dots)\varepsilon + (\dots)\varepsilon^{2} + \dots$$

Reweighting & Automatic Differentiation

Conventional Reweighting

$$\left\langle f(x)\right\rangle _{S'}=\frac{\left\langle e^{S-S'}f(x)\right\rangle _{S}}{\left\langle e^{S-S'}\right\rangle _{S}}$$

Introduce truncated polynomials with $\tilde{\theta} = \theta + \varepsilon$

$$w^{\alpha} = e^{S(x,\theta) - S(x,\bar{\theta})} = 1 + (\dots)\varepsilon + (\dots)\varepsilon^{2} + \dots$$

Taylor series coefficients

$$\frac{\sum_{\alpha} e^{S(x^{\alpha},\theta) - S(x^{\alpha},\tilde{\theta})} f(x)}{\sum_{\alpha} e^{S(x^{\alpha},\theta) - S(x^{\alpha},\tilde{\theta})}} = \sum_{n=0}^{K} f_n \varepsilon^n, \qquad f_n = \frac{1}{n!} \frac{\partial^n}{\partial \theta^n} \left\langle f(x) \right\rangle \Big|_{\theta}$$

4/15

1. Fictitious momenta π conjugate to x

$$H(x,\pi) = \frac{1}{2}\pi^2 + S(x;\theta)$$

2. Solve EoM with initial random momenta $\pi(t=0) \sim \mathcal{N}(0,1)$

$$\dot{x} = \frac{\partial H}{\partial \pi} = \pi, \qquad \dot{\pi} = -\frac{\partial H}{\partial x}$$

 $(x(0), \pi(0)) \longrightarrow (x(t), \pi(t))$

- 3. Metropolis: Acc./Rej. with probability $e^{-\Delta H}$
- 4. Repeat

1. Fictitious momenta π conjugate to x

$$H(x,\pi) = \frac{1}{2}\pi^2 + S(x;\theta)$$

2. Solve EoM with initial random momenta $\pi(t=0) \sim \mathcal{N}(0,1)$

$$\dot{x} = \frac{\partial H}{\partial \pi} = \pi, \qquad \dot{\pi} = -\frac{\partial H}{\partial x}$$

 $(x(0), \pi(0)) \longrightarrow (x(t), \pi(t))$

- 3. Metropolis: Acc./Rej. with probability $e^{-\Delta H}$
- 4. Repeat

 $\left(\begin{array}{c} \text{Promote } \theta \longrightarrow \tilde{\theta} = \theta + \varepsilon \\ (\text{also } \pi, \ x) \end{array} \right)$

1. Fictitious momenta π conjugate to x

$$H(x,\pi) = \frac{1}{2}\pi^2 + S(x;\theta)$$

2. Solve EoM with initial random momenta $\pi(t=0) \sim \mathcal{N}(0,1)$

$$\dot{x} = \frac{\partial H}{\partial \pi} = \pi, \qquad \dot{\pi} = -\frac{\partial H}{\partial x}$$

 $(x(0), \pi(0)) \longrightarrow (x(t), \pi(t))$

- 3. Metropolis: Acc./Rej. with probability $e^{-\Delta H}$
- 4. Repeat

$$\begin{array}{c} \text{Promote } \theta \longrightarrow \tilde{\theta} = \theta + \varepsilon \\ \text{(also } \pi, \ x) \end{array}$$

Solve EoM at each order
$$(x \longrightarrow \tilde{x})$$

1. Fictitious momenta π conjugate to x

$$H(x,\pi) = \frac{1}{2}\pi^2 + S(x;\theta)$$

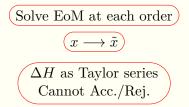
2. Solve EoM with initial random momenta $\pi(t=0) \sim \mathcal{N}(0,1)$

$$\dot{x} = \frac{\partial H}{\partial \pi} = \pi, \qquad \dot{\pi} = -\frac{\partial H}{\partial x}$$

 $(x(0), \pi(0)) \longrightarrow (x(t), \pi(t))$

- 3. Metropolis: Acc./Rej. with probability $e^{-\Delta H}$
- 4. Repeat

$$\begin{array}{c} \text{Promote } \theta \longrightarrow \tilde{\theta} = \theta + \varepsilon \\ \text{(also } \pi, \ x) \end{array}$$



1. Fictitious momenta π conjugate to x

$$H(x,\pi) = \frac{1}{2}\pi^2 + S(x;\theta)$$

2. Solve EoM with initial random momenta $\pi(t=0) \sim \mathcal{N}(0,1)$

$$\dot{x} = \frac{\partial H}{\partial \pi} = \pi, \qquad \dot{\pi} = -\frac{\partial H}{\partial x}$$

 $(x(0), \pi(0)) \longrightarrow (x(t), \pi(t))$

Promote
$$\theta \longrightarrow \tilde{\theta} = \theta + \varepsilon$$

(also π, x)

$$\begin{array}{l} =\pi, \quad \dot{\pi} = -\frac{\partial H}{\partial x} \\ (\text{Solve EoM at each order}) \\ (\chi \to \tilde{x}) \\ (\chi \to \tilde{x})$$
 (\chi \to \tilde{x}) (\chi

3. Metropolis: Acc./Rej. with -probability $e^{-\Delta H}$

4. Repeat

5/15

Reweighting

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\theta)}$$

Weights w^{α} take into account dependence on parameters θ

HMC

$$\{\tilde{x}^{\alpha}\}_{\alpha=1}^N \sim e^{-S(\tilde{x};\tilde{\theta})}$$

Samples carry dependence on the parameters $\tilde{\theta}$

Reweighting

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\theta)}$$

Weights w^{α} take into account dependence on parameters θ

HMC

$$\{\tilde{x}^{\alpha}\}_{\alpha=1}^N \sim e^{-S(\tilde{x};\tilde{\theta})}$$

Samples carry dependence on the parameters $\tilde{\theta}$

Toy model:
$$p_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}, \qquad \{x^{\alpha}\} \sim p_{\sigma^*=1},$$

Reweighting

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\theta)}$$

Weights w^{α} take into account dependence on parameters θ

HMC

$$\{\tilde{x}^{\alpha}\}_{\alpha=1}^N \sim e^{-S(\tilde{x};\tilde{\theta})}$$

Samples carry dependence on the parameters $\tilde{\theta}$

Toy model:
$$p_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}, \qquad \{x^{\alpha}\} \sim p_{\sigma^*=1},$$

 $\sigma^* = 1 \longrightarrow \sigma \qquad w^{\alpha}(x) = x - \text{dependent}$

Reweighting

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\theta)}$$

Weights w^{α} take into account dependence on parameters θ

HMC

$$\{\tilde{x}^{\alpha}\}_{\alpha=1}^N \sim e^{-S(\tilde{x};\tilde{\theta})}$$

Samples carry dependence on the parameters $\tilde{\theta}$

Toy model:
$$p_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}, \qquad \{x^{\alpha}\} \sim p_{\sigma^*=1},$$

 $\sigma^* = 1 \longrightarrow \sigma \qquad w^{\alpha}(x) = x - \text{dependent}$
Transformation: $y^{\alpha} = \sigma x^{\alpha}, \qquad \{y^{\alpha}\} \sim p_{\sigma}$

Reweighting

$$\{x^{\alpha}\}_{\alpha=1}^N \sim e^{-S(x;\theta)}$$

Weights w^{α} take into account dependence on parameters θ

HMC

$$\{\tilde{x}^{\alpha}\}_{\alpha=1}^N \sim e^{-S(\tilde{x};\tilde{\theta})}$$

Samples carry dependence on the parameters $\tilde{\theta}$

Toy model:
$$p_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}, \qquad \{x^{\alpha}\} \sim p_{\sigma^*=1},$$

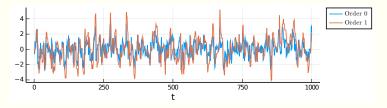
 $\sigma^* = 1 \longrightarrow \sigma \qquad w^{\alpha}(x) = x - \text{dependent}$
Transformation: $y^{\alpha} = \sigma x^{\alpha}, \qquad \{y^{\alpha}\} \sim p_{\sigma}$
 $\sigma^* = 1 \longrightarrow \sigma \qquad w^{\alpha}(y) = y - \text{independent}$ 'No Reweighting'

$$y^{\alpha} = \sigma x^{\alpha}$$
 $\tilde{y}^{\alpha} = x^{\alpha} + x^{\alpha} \varepsilon$ $\varepsilon = \sigma - 1$

$$y^{\alpha} = \sigma x^{\alpha}$$
 $\tilde{y}^{\alpha} = x^{\alpha} + x^{\alpha} \varepsilon$ $\varepsilon = \sigma - 1$

What about HMC? Equations of motion

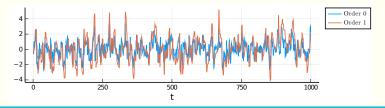
$$\begin{aligned} \ddot{x}_0 &= -\frac{x_0}{\sigma^2}, \qquad \langle x_0 \rangle \\ \ddot{x}_1 &= -\frac{x_1}{\sigma^2} + 2\frac{x_0}{\sigma^3}, \qquad \langle x_1 \rangle = \langle x_0 \rangle \end{aligned}$$



$$y^{\alpha} = \sigma x^{\alpha}$$
 $\tilde{y}^{\alpha} = x^{\alpha} + x^{\alpha} \varepsilon$ $\varepsilon = \sigma - 1$

What about HMC? Equations of motion

$$\begin{aligned} \ddot{x}_0 &= -\frac{x_0}{\sigma^2}, \qquad \langle x_0 \rangle \\ \ddot{x}_1 &= -\frac{x_1}{\sigma^2} + 2\frac{x_0}{\sigma^3}, \qquad \langle x_1 \rangle = \langle x_0 \rangle \end{aligned}$$



Hamiltonian method finds the change of variables $x \to \tilde{y}$ that lead to constant reweighting factors 4D Scalar theory on the lattice: $\lambda - \phi^4$

$$S_{\text{latt}}(\hat{\phi}; \boldsymbol{m}, \lambda) = \sum_{x} \left\{ \frac{1}{2} \sum_{\mu} [\phi(x+\mu) - \phi(x)]^2 + \frac{\boldsymbol{m}^2}{2} \phi^2(x) + \lambda \phi^4(x) \right\}$$
$$\langle \phi^2(x) \rangle$$
$$\langle s(x; \boldsymbol{m}, \lambda) \rangle = \frac{1}{2} \langle [\phi(x+\mu) - \phi(x)]^2 \rangle + \frac{\boldsymbol{m}^2}{2} \langle \phi^2(x) \rangle + \lambda \langle \phi^4(x) \rangle.$$

Connected VS Disconnected contributions

$$\partial \langle \mathcal{O} \rangle = \langle \partial \mathcal{O} \rangle + [\langle \mathcal{O} \rangle \langle \partial S \rangle - \langle \mathcal{O} \partial S \rangle]$$

4D Scalar theory on the lattice: $\lambda - \phi^4$

$$S_{\text{latt}}(\hat{\phi}; \boldsymbol{m}, \boldsymbol{\lambda}) = \sum_{x} \left\{ \frac{1}{2} \sum_{\mu} [\phi(x+\mu) - \phi(x)]^2 + \frac{m^2}{2} \phi^2(x) + \boldsymbol{\lambda} \phi^4(x) \right\}$$
$$\langle \phi^2(x) \rangle$$
$$\langle s(x; \boldsymbol{m}, \boldsymbol{\lambda}) \rangle = \frac{1}{2} \langle [\phi(x+\mu) - \phi(x)]^2 \rangle + \frac{m^2}{2} \langle \phi^2(x) \rangle + \boldsymbol{\lambda} \langle \phi^4(x) \rangle .$$

Connected VS Disconnected contributions

$$\partial \left\langle \mathcal{O} \right\rangle = \left\langle \partial \mathcal{O} \right\rangle + \left[\left\langle \mathcal{O} \right\rangle \left\langle \partial S \right\rangle - \left\langle \mathcal{O} \partial S \right\rangle \right]$$

Dependence on the couplings:

$$\frac{\partial}{\partial m^2} \qquad \frac{\partial}{\partial \lambda} \qquad \frac{\partial^2}{\partial m^2 \partial \lambda}$$

$\lambda - \phi^4$: Reweighting VS Hamiltonian Expansion

					λ		
			0.0	0.1	0.2	0.3	0.4
	0	RW	-0.0428(20)	-0.0328(14)	-0.0270(13)	-0.0241(12)	-0.0220(11)
	$\partial_{\hat{m}^2}$	HAD	-0.042526(41)	-0.030880(14)	-0.026273(10)	-0.0233672(82)	-0.0212721(72)
$\langle \phi^2 \rangle$	∂_{λ}	RW	-0.0779(22)	-0.05227(94)	-0.04370(89)	-0.03534(61)	-0.03169(50)
$\langle \phi \rangle$		HAD	-0.077816(79)	-0.052499(24)	-0.042218(19)	-0.035830(14)	-0.031323(11)
	$\partial^2_{\hat{m}^2,\lambda}$	RW	0.43(43)	0.03(16)	0.16(14)	-0.10(11)	0.116(77)
		HAD	0.2733(22)	0.061593(99)	0.035082(69)	0.024240(42)	0.018263(31)
	$\partial_{\hat{m}^2}$	RW	-0.0025(42)	-0.0006(34)	0.0027(35)	0.0028(36)	0.0057(32)
		HAD	-0.000003(22)	0.002623(16)	0.004218(20)	0.005397(14)	0.006265(16)
$\langle a \rangle$	∂_{λ}	RW	-0.0765(46)	-0.0567(26)	-0.0538(25)	-0.0447(23)	-0.0400(17)
$\langle s \rangle$		HAD	-0.069774(49)	-0.057738(34)	-0.050128(40)	-0.044530(27)	-0.040250(27)
	$\partial^2_{\hat{m}^2,\lambda}$	RW	-1.9(2.8)	-0.16(39)	0.36(43)	-0.43(32)	0.16(26)
		HAD	0.038864(96)	0.019197(66)	0.013405(69)	0.010126(50)	0.007860(47)

Table L^4 lattice with L/a = 32 and $\hat{m}^2 = 0.05$.

$\lambda-\phi^4$: Reweighting VS Hamiltonian Expansion

					λ		
			0.0	0.1	0.2	0.3	0.4
	а	RW	-0.0428(20)	-0.0328(14)	-0.0270(13)	-0.0241(12)	-0.0220(11)
	$\partial_{\hat{m}^2}$	HAD	-0.042526(41)	-0.030880(14)	-0.026273(10)	-0.0233672(82)	-0.0212721(72)
$\langle \phi^2 \rangle$	∂_{λ}	RW	-0.0779(22)	-0.05227(94)	-0.04370(89)	-0.03534(61)	-0.03169(50)
$\langle \phi \rangle$	o_{λ}	HAD	-0.077816(79)	-0.052499(24)	-0.042218(19)	-0.035830(14)	-0.031323(11)
	$\partial^2_{\hat{m}^2,\lambda}$	RW	0.43(43)	0.03(16)	0.16(14)	-0.10(11)	0.116(77)
		HAD	0.2733(22)	0.061593(99)	0.035082(69)	0.024240(42)	0.018263(31)
	$\partial_{\hat{m}^2}$	RW	-0.0025(42)	-0.0006(34)	0.0027(35)	0.0028(36)	0.0057(32)
		HAD	-0.000003(22)	0.002623(16)	0.004218(20)	0.005397(14)	0.006265(16)
$\langle s \rangle$	∂_{λ}	RW	-0.0765(46)	-0.0567(26)	-0.0538(25)	-0.0447(23)	-0.0400(17)
		HAD	-0.069774(49)	-0.057738(34)	-0.050128(40)	-0.044530(27)	-0.040250(27)
	$\partial^2_{\hat{m}^2,\lambda}$	RW	-1.9(2.8)	-0.16(39)	0.36(43)	-0.43(32)	0.16(26)
		HAD	0.038864(96)	0.019197(66)	0.013405(69)	0.010126(50)	0.007860(47)

Table L^4 lattice with L/a = 32 and $\hat{m}^2 = 0.05$.

- Same statistics
- Hamiltonian expansion is 100x! more precise
- Reweighting shows no signal for cross derivatives

Method Comparison

Reweighting+AD

- Re-utilize conventional samples $\{x^{\alpha}\}_{\alpha=1}^{N}$
- Weighted Expectation values

$$\langle f(x)\rangle = \frac{\sum_{\alpha}\tilde{w}(x^{\alpha})f(x^{\alpha})}{\sum_{\alpha}\tilde{w}(x^{\alpha})}$$

- Noisy disconnected contributions – larger errors
- Rules out cross derivatives

HMC+AD

- Samples are power series $\{\tilde{x}^{\alpha}\}_{\alpha=1}^{N}$ – carry information about the dependence on parameters
- Normal expectation value

$$\langle f(x)\rangle = \sum_{\alpha} f(\tilde{x}^{\alpha})$$

- HMC finds exact reparametrization
- Only connected contributions

Standard RW:

$$w^{\alpha} = e^{S(x^{\alpha}; m, \lambda) - S(x^{\alpha}; \tilde{m}, \tilde{\lambda})}$$

- Weights w^{α} are potentially large
- Samples $\{x^{\alpha}\}_{\alpha=1}^{N}$ do not describe ∂_{m^2}
- Large variance

Standard RW:

$$w^{\alpha} = e^{S(x^{\alpha}; m, \lambda) - S(x^{\alpha}; \tilde{m}, \tilde{\lambda})}$$

- Weights w^{α} are potentially large
- Samples $\{x^{\alpha}\}_{\alpha=1}^{N}$ do not describe ∂_{m^2}
- Large variance

Change variables first!

$$x \longrightarrow \tilde{y} = x + f(x)\varepsilon$$

Reweighting after change of variables

$$w^{\alpha} = e^{S(x^{\alpha}; m, \lambda) - S(\tilde{y}^{\alpha}; \tilde{m}, \tilde{\lambda}) - \log \left| \tilde{J} \right|}$$

Find transformation that gives constant weights

[S. Bacchio, arXiv:2305.07932] - similar concept with Gradient Flow transformation

Lattice action, momentum space

$$S_{\text{latt}}(\phi_p; m) = \sum_p \phi_p^* \left[\sum_\mu \hat{p}_\mu^2 + m^2 \right] \phi_p, \quad \hat{p} = 2\sin(ap/2)$$

P Transformation $\tilde{\varphi}_p = \phi_p + f_p \varepsilon$ (expansion around m)

Lattice action, momentum space

$$S_{\text{latt}}(\phi_p; m) = \sum_p \phi_p^* \left[\sum_{\mu} \hat{p}_{\mu}^2 + m^2 \right] \phi_p, \quad \hat{p} = 2\sin(ap/2)$$

Transformation $\tilde{\varphi}_p = \phi_p + f_p \varepsilon$ (expansion around m)

RW factor

$$S(\phi_p; m) - S(\tilde{\varphi}_p; \tilde{m}) = -\varepsilon \left[(\hat{p}^2 + \tilde{m}^2)(\phi_p^* f_p + \phi_p f_p^*) + \phi_p^* \phi_p \right]$$

Lattice action, momentum space

$$S_{\text{latt}}(\phi_p; m) = \sum_p \phi_p^* \left[\sum_{\mu} \hat{p}_{\mu}^2 + m^2 \right] \phi_p, \quad \hat{p} = 2\sin(ap/2)$$

Transformation $\tilde{\varphi}_p = \phi_p + f_p \varepsilon$ (expansion around *m*)

RW factor

$$S(\phi_p; m) - S(\tilde{\varphi}_p; \tilde{m}) = -\varepsilon \left[(\hat{p}^2 + \tilde{m}^2)(\phi_p^* f_p + \phi_p f_p^*) + \phi_p^* \phi_p \right]$$

- $\Delta S = 0$ with $f_p = -\frac{\phi_p}{2(\hat{p}^2 + m^2)}$

Lattice action, momentum space

$$S_{\text{latt}}(\phi_p; m) = \sum_p \phi_p^* \left[\sum_{\mu} \hat{p}_{\mu}^2 + m^2 \right] \phi_p, \quad \hat{p} = 2\sin(ap/2)$$

Transformation $\tilde{\varphi}_p = \phi_p + f_p \varepsilon$ (expansion around *m*)

RW factor

$$S(\phi_p; m) - S(\tilde{\varphi}_p; \tilde{m}) = -\varepsilon \left[(\hat{p}^2 + \tilde{m}^2)(\phi_p^* f_p + \phi_p f_p^*) + \phi_p^* \phi_p \right]$$

•
$$-\Delta S = 0$$
 with $f_p = -\frac{\phi_p}{2(\hat{p}^2 + m^2)}$

Constant weights (from Jacobian only)

$$w(\phi_p; m) = \prod_p -\frac{1}{2(\hat{p}^2 + m^2)}$$

12/15

Reweighting, Transformed Reweighting & HMC

			λ					
			0.0	0.1	0.2	0.3	0.4	
		RW	-0.0428(20)	-0.0328(14)	-0.0270(13)	-0.0241(12)	-0.0220(11)	
	$\partial_{\hat{m}^2}$	TRW	-0.042528(30)	-0.03069(32)	-0.02604(37)	-0.02328(54)	-0.02079(56)	
$\langle \phi^2 \rangle$		HAD	-0.042526(41)	-0.030880(14)	-0.026273(10)	-0.0233672(82)	-0.0212721(72)	
$\langle \psi \rangle$	∂_{λ}	RW	-0.0779(22)	-0.05227(94)	-0.04370(89)	-0.03534(61)	-0.03169(50)	
	∂_{λ}	HAD	-0.077816(79)	-0.052499(24)	-0.042218(19)	-0.035830(14)	-0.031323(11)	
	$\partial^2_{\hat{m}^2,\lambda}$	RW	0.43(43)	0.03(16)	0.16(14)	-0.10(11)	0.116(77)	
	$O_{\hat{m}^2,\lambda}$	HAD	0.2733(22)	0.061593(99)	0.035082(69)	0.024240(42)	0.018263(31)	
	$\partial_{\hat{m}^2}$	RW	-0.0025(42)	-0.0006(34)	0.0027(35)	0.0028(36)	0.0057(32)	
		TRW	$3(28) \times 10^{-19}$	0.00344(85)	0.0052(11)	0.0052(17)	0.0072(15)	
(a)		HAD	-0.000003(22)	0.002623(16)	0.004218(20)	0.005397(14)	0.006265(16)	
$\langle s \rangle$	∂_{λ}	RW	-0.0765(46)	-0.0567(26)	-0.0538(25)	-0.0447(23)	-0.0400(17)	
	∂_{λ}	HAD	-0.069774(49)	-0.057738(34)	-0.050128(40)	-0.044530(27)	-0.040250(27)	
	a^2	RW	-1.9(2.8)	-0.16(39)	0.36(43)	-0.43(32)	0.16(26)	
	$\partial^2_{\hat{m}^2,\lambda}$	HAD	0.038864(96)	0.019197(66)	0.013405(69)	0.010126(50)	0.007860(47)	

Reweighting, Transformed Reweighting & HMC

			λ					
			0.0	0.1	0.2	0.3	0.4	
		RW	-0.0428(20)	-0.0328(14)	-0.0270(13)	-0.0241(12)	-0.0220(11)	
	$\partial_{\hat{m}^2}$	TRW	-0.042528(30)	-0.03069(32)	-0.02604(37)	-0.02328(54)	-0.02079(56)	
$\langle \phi^2 \rangle$		HAD	-0.042526(41)	-0.030880(14)	-0.026273(10)	-0.0233672(82)	-0.0212721(72)	
$\langle \psi \rangle$	∂_{λ}	RW	-0.0779(22)	-0.05227(94)	-0.04370(89)	-0.03534(61)	-0.03169(50)	
		HAD	-0.077816(79)	-0.052499(24)	-0.042218(19)	-0.035830(14)	-0.031323(11)	
	$\partial^2_{\hat{m}^2,\lambda}$	RW	0.43(43)	0.03(16)	0.16(14)	-0.10(11)	0.116(77)	
	$O_{\hat{m}^2,\lambda}$	HAD	0.2733(22)	0.061593(99)	0.035082(69)	0.024240(42)	0.018263(31)	
	$\partial_{\hat{m}^2}$	RW	-0.0025(42)	-0.0006(34)	0.0027(35)	0.0028(36)	0.0057(32)	
		TRW	$3(28) \times 10^{-19}$	0.00344(85)	0.0052(11)	0.0052(17)	0.0072(15)	
(a)		HAD	-0.000003(22)	0.002623(16)	0.004218(20)	0.005397(14)	0.006265(16)	
$\langle s \rangle$	∂_{λ}	RW	-0.0765(46)	-0.0567(26)	-0.0538(25)	-0.0447(23)	-0.0400(17)	
		HAD	-0.069774(49)	-0.057738(34)	-0.050128(40)	-0.044530(27)	-0.040250(27)	
	a^2	RW	-1.9(2.8)	-0.16(39)	0.36(43)	-0.43(32)	0.16(26)	
	$\partial^2_{\hat{m}^2,\lambda}$	HAD	0.038864(96)	0.019197(66)	0.013405(69)	0.010126(50)	0.007860(47)	

- Exact Transformation $\lambda = 0$
- Precision degrades with λ
- Improved w.r.t. reweighting even for large couplings (4D!)

Second Derivative – Reweighting VS Transformed Reweighting

			λ					
			0.0	0.1	0.2	0.3	0.4	
$\langle \phi^2 \rangle$	$\partial^2_{\hat{m}^4}$	RW TRW	$\begin{array}{c} 0.11(25) \\ 0.0669(34) \end{array}$	$\begin{array}{c} 0.13(15) \\ 0.0297(97) \end{array}$	$\begin{array}{c} 0.17(12) \\ 0.018(13) \end{array}$	$\begin{array}{c} 0.16(13) \\ 0.022(27) \end{array}$	$\begin{array}{c} 0.15(11) \\ 0.030(29) \end{array}$	
$\langle s \rangle$	$\partial^2_{\hat{m}^4}$	RW TRW	$\begin{array}{c} 0.59(56) \\ 0.0015(74) \end{array}$	$\begin{array}{c} 0.23(35) \\ 0.066(28) \end{array}$	$0.51(34) \\ -0.018(40)$	$\begin{array}{c} 0.29(37) \\ 0.066(73) \end{array}$	$\begin{array}{c} 0.54(32) \\ 0.103(83) \end{array}$	

Table L^4 lattice with L/a = 32 and $\hat{m}^2 = 0.05$.

Transformed reweighting allows higher order derivatives

Conclusions & Outlook

- AD is an important tool no simple extension for stochastic processes
- HMC (or similar)
 - ✤ NSPT inspired solution
 - Model dependent convergence
 - Good precision
- **Reweighting** for generic MC process
 - ✤ Reutilize samples (sampler agnostic)
 - Larger variance worse precision
- Apt for arbitrarily complicated observables
- **R**W open for improvement: **ML** techniques to find transformation f(x)
 - ✤ Reduce variance from disconnected contributions
 - \blacklozenge LQCD state of the art use simple reweighting
