
The dependence of observables
on action parameters

[arXiv:2307.15406]

Guilherme Catumba
Alberto Ramos; Bryan Zaldívar

IFIC – Valencia

August 2, 2023



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings

Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings

Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings

Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings

Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings
Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings
Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Differentiation ProblemDifferentiation Problem

2/15

{xα}Nα=1 ∼ e−S(x;θ)

⟨f(θ)⟩Sθ
=

1

N

N∑
α=1

f(xα; θ)

∂

∂θi
⟨f(x; θ)⟩Sθ

∂2

∂θi∂θj
⟨f(x; θ)⟩Sθ

. . .

Conventional Automatic
Differentiation ruled out due

to Stochastic elements

Dependence on bare couplings
Reweighting
QCD+QED – ∂e2

Optimization problems

Bayesian inference –
Hyperparameters

...
[G.C., A. Ramos, B. Zaldivar,
arXiv:2307.15406]



Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

3/15

Power series O
(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order

x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε
2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x2
1/2 + x2)ε

2 + . . .

. . .

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2

Chain rule

Expansion in multiple variables!
deterministic

function
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x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε
2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x2
1/2 + x2)ε

2 + . . .

. . .

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2

Chain rule

Expansion in multiple variables!
deterministic

function



Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

3/15

Power series O
(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order
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Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ′)

Conventional Reweighting

⟨f(x)⟩S′ =

〈
eS−S′

f(x)
〉
S

⟨eS−S′⟩S

Introduce truncated polynomials with θ̃ = θ + ε

wα = eS(x,θ)−S(x,θ̃) = 1 + ( . . . )ε+ ( . . . )ε2 + . . .

Taylor series coefficients∑
α eS(xα,θ)−S(xα,θ̃)f(x)∑

α eS(xα,θ)−S(xα,θ̃)
=

K∑
n=0

fnε
n, fn =

1

n!

∂n

∂θn
⟨f(x)⟩

∣∣∣∣
θ
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1. Fictitious momenta π conjugate to x

H(x, π) =
1

2
π2 + S(x; θ)

2. Solve EoM with initial random
momenta π(t = 0) ∼ N (0, 1)

ẋ =
∂H

∂π
= π, π̇ = −∂H

∂x

(x(0), π(0)) −→ (x(t), π(t))

3. Metropolis: Acc./Rej. with
probability e−∆H

4. Repeat

Promote θ −→ θ̃ = θ + ε
(also π, x)

Solve EoM at each order

x −→ x̃

∆H as Taylor series
Cannot Acc./Rej.

MC average as Taylor series

⟨f(x)⟩ = 1

N

∑
α

f(x̃) =

K∑
n=0

fnε
n
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Reweighting

{xα}Nα=1 ∼ e−S(x;θ)

Weights wα take into
account dependence
on parameters θ

HMC

{x̃α}Nα=1 ∼ e−S(x̃;θ̃)

Samples carry
dependence on the
parameters θ̃

How are these methods related?

Toy model: pσ(x) =
1

σ
√
2π

e−
x2

2σ2 , {xα} ∼ pσ∗=1,

σ∗ = 1 −→ σ wα(x) = x− dependent

Transformation: yα = σxα, {yα} ∼ pσ

σ∗ = 1 −→ σ wα(y) = y − independent ‘No Reweighting’
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yα = σxα ỹα = xα + xαε ε = σ − 1

What about HMC?
Equations of motion

ẍ0 = −x0
σ2

, ⟨x0⟩

ẍ1 = −x1
σ2

+ 2
x0
σ3

, ⟨x1⟩ = ⟨x0⟩
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t

Order 0
Order 1

Hamiltonian method finds the change of variables x → ỹ
that lead to constant reweighting factors
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Slatt(ϕ̂;m,λ) =
∑
x

{
1

2

∑
µ

[ϕ(x+ µ)− ϕ(x)]2 +
m2

2
ϕ2(x) + λϕ4(x)

}
〈
ϕ2(x)

〉
⟨s(x;m,λ)⟩ = 1

2
⟨[ϕ(x+ µ)− ϕ(x)]2⟩+ m2

2
⟨ϕ2(x)⟩+ λ⟨ϕ4(x)⟩ .

Connected VS Disconnected contributions

∂ ⟨O⟩ = ⟨∂O⟩+ [⟨O⟩ ⟨∂S⟩ − ⟨O∂S⟩]

Dependence on the couplings:

∂

∂m2

∂

∂λ

∂2

∂m2∂λ
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λ
0.0 0.1 0.2 0.3 0.4

⟨ϕ2⟩

∂m̂2
RW -0.0428(20) -0.0328(14) -0.0270(13) -0.0241(12) -0.0220(11)
HAD -0.042526(41) -0.030880(14) -0.026273(10) -0.0233672(82) -0.0212721(72)

∂λ
RW -0.0779(22) -0.05227(94) -0.04370(89) -0.03534(61) -0.03169(50)
HAD -0.077816(79) -0.052499(24) -0.042218(19) -0.035830(14) -0.031323(11)

∂2
m̂2,λ

RW 0.43(43) 0.03(16) 0.16(14) -0.10(11) 0.116(77)
HAD 0.2733(22) 0.061593(99) 0.035082(69) 0.024240(42) 0.018263(31)

⟨s⟩

∂m̂2
RW -0.0025(42) -0.0006(34) 0.0027(35) 0.0028(36) 0.0057(32)
HAD -0.000003(22) 0.002623(16) 0.004218(20) 0.005397(14) 0.006265(16)

∂λ
RW -0.0765(46) -0.0567(26) -0.0538(25) -0.0447(23) -0.0400(17)
HAD -0.069774(49) -0.057738(34) -0.050128(40) -0.044530(27) -0.040250(27)

∂2
m̂2,λ

RW -1.9(2.8) -0.16(39) 0.36(43) -0.43(32) 0.16(26)
HAD 0.038864(96) 0.019197(66) 0.013405(69) 0.010126(50) 0.007860(47)

TableL4 lattice with L/a = 32 and m̂2 = 0.05.
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HAD -0.077816(79) -0.052499(24) -0.042218(19) -0.035830(14) -0.031323(11)

∂2
m̂2,λ

RW 0.43(43) 0.03(16) 0.16(14) -0.10(11) 0.116(77)
HAD 0.2733(22) 0.061593(99) 0.035082(69) 0.024240(42) 0.018263(31)

⟨s⟩

∂m̂2
RW -0.0025(42) -0.0006(34) 0.0027(35) 0.0028(36) 0.0057(32)
HAD -0.000003(22) 0.002623(16) 0.004218(20) 0.005397(14) 0.006265(16)

∂λ
RW -0.0765(46) -0.0567(26) -0.0538(25) -0.0447(23) -0.0400(17)
HAD -0.069774(49) -0.057738(34) -0.050128(40) -0.044530(27) -0.040250(27)

∂2
m̂2,λ

RW -1.9(2.8) -0.16(39) 0.36(43) -0.43(32) 0.16(26)
HAD 0.038864(96) 0.019197(66) 0.013405(69) 0.010126(50) 0.007860(47)

TableL4 lattice with L/a = 32 and m̂2 = 0.05.

Same statistics

Hamiltonian expansion is 100x! more precise

Reweighting shows no signal for cross derivatives
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Reweighting+AD

Re-utilize conventional
samples {xα}Nα=1

Weighted Expectation
values

⟨f(x)⟩ =
∑

α w̃(xα)f(xα)∑
α w̃(xα)

Noisy disconnected
contributions – larger
errors

Rules out cross
derivatives

HMC+AD

Samples are power
series {x̃α}Nα=1 – carry
information about the
dependence on
parameters

Normal expectation
value

⟨f(x)⟩ =
∑
α

f(x̃α)

HMC finds exact
reparametrization

Only connected
contributions



Can we improve reweighting?Can we improve reweighting?
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Standard RW:

wα = eS(x
α;m,λ)−S(xα;m̃,λ̃)

Weights wα are potentially
large

Samples {xα}Nα=1 do not
describe ∂m2

Large variance

Change variables first!

x −→ ỹ = x+ f(x)ε

Reweighting after change of variables

wα = eS(x
α;m,λ)−S(ỹα;m̃,λ̃)−log |J̃|

Find transformation that gives constant weights

[S. Bacchio, arXiv:2305.07932] – similar concept with Gradient Flow transformation
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Lattice action, momentum space

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp, p̂ = 2 sin(ap/2)

Transformation φ̃p = ϕp + fpε (expansion around m)

RW factor

S(ϕp;m)− S(φ̃p; m̃) = −ε
[
(p̂2 + m̃2)(ϕ∗

pfp + ϕpf
∗
p ) + ϕ∗

pϕp

]
−∆S = 0 with

fp = − ϕp

2(p̂2 +m2)

Constant weights (from Jacobian only)

w(ϕp;m) =
∏
p

− 1

2(p̂2 +m2)



Free Theory caseFree Theory case

12/15

Lattice action, momentum space

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp, p̂ = 2 sin(ap/2)

Transformation φ̃p = ϕp + fpε (expansion around m)

RW factor

S(ϕp;m)− S(φ̃p; m̃) = −ε
[
(p̂2 + m̃2)(ϕ∗

pfp + ϕpf
∗
p ) + ϕ∗

pϕp

]

−∆S = 0 with
fp = − ϕp

2(p̂2 +m2)

Constant weights (from Jacobian only)

w(ϕp;m) =
∏
p

− 1

2(p̂2 +m2)



Free Theory caseFree Theory case

12/15

Lattice action, momentum space

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp, p̂ = 2 sin(ap/2)

Transformation φ̃p = ϕp + fpε (expansion around m)

RW factor

S(ϕp;m)− S(φ̃p; m̃) = −ε
[
(p̂2 + m̃2)(ϕ∗

pfp + ϕpf
∗
p ) + ϕ∗

pϕp

]
−∆S = 0 with

fp = − ϕp

2(p̂2 +m2)

Constant weights (from Jacobian only)

w(ϕp;m) =
∏
p

− 1

2(p̂2 +m2)



Free Theory caseFree Theory case

12/15

Lattice action, momentum space

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp, p̂ = 2 sin(ap/2)

Transformation φ̃p = ϕp + fpε (expansion around m)

RW factor

S(ϕp;m)− S(φ̃p; m̃) = −ε
[
(p̂2 + m̃2)(ϕ∗

pfp + ϕpf
∗
p ) + ϕ∗

pϕp

]
−∆S = 0 with

fp = − ϕp

2(p̂2 +m2)

Constant weights (from Jacobian only)

w(ϕp;m) =
∏
p

− 1

2(p̂2 +m2)



Reweighting, Transformed Reweighting & HMCReweighting, Transformed Reweighting & HMC
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λ
0.0 0.1 0.2 0.3 0.4

⟨ϕ2⟩

∂m̂2

RW -0.0428(20) -0.0328(14) -0.0270(13) -0.0241(12) -0.0220(11)
TRW -0.042528(30) -0.03069(32) -0.02604(37) -0.02328(54) -0.02079(56)
HAD -0.042526(41) -0.030880(14) -0.026273(10) -0.0233672(82) -0.0212721(72)

∂λ
RW -0.0779(22) -0.05227(94) -0.04370(89) -0.03534(61) -0.03169(50)
HAD -0.077816(79) -0.052499(24) -0.042218(19) -0.035830(14) -0.031323(11)

∂2
m̂2,λ

RW 0.43(43) 0.03(16) 0.16(14) -0.10(11) 0.116(77)
HAD 0.2733(22) 0.061593(99) 0.035082(69) 0.024240(42) 0.018263(31)

⟨s⟩

∂m̂2

RW -0.0025(42) -0.0006(34) 0.0027(35) 0.0028(36) 0.0057(32)
TRW 3(28)×10−19 0.00344(85) 0.0052(11) 0.0052(17) 0.0072(15)
HAD -0.000003(22) 0.002623(16) 0.004218(20) 0.005397(14) 0.006265(16)

∂λ
RW -0.0765(46) -0.0567(26) -0.0538(25) -0.0447(23) -0.0400(17)
HAD -0.069774(49) -0.057738(34) -0.050128(40) -0.044530(27) -0.040250(27)

∂2
m̂2,λ

RW -1.9(2.8) -0.16(39) 0.36(43) -0.43(32) 0.16(26)
HAD 0.038864(96) 0.019197(66) 0.013405(69) 0.010126(50) 0.007860(47)
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Exact Transformation λ = 0

Precision degrades with λ

Improved w.r.t. reweighting even for large couplings (4D!)
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λ
0.0 0.1 0.2 0.3 0.4

⟨ϕ2⟩ ∂2
m̂4

RW 0.11(25) 0.13(15) 0.17(12) 0.16(13) 0.15(11)
TRW 0.0669(34) 0.0297(97) 0.018(13) 0.022(27) 0.030(29)

⟨s⟩ ∂2
m̂4

RW 0.59(56) 0.23(35) 0.51(34) 0.29(37) 0.54(32)
TRW 0.0015(74) 0.066(28) -0.018(40) 0.066(73) 0.103(83)

TableL4 lattice with L/a = 32 and m̂2 = 0.05.

Transformed reweighting allows higher order derivatives
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AD is an important tool – no simple extension for stochastic
processes
HMC (or similar)

NSPT inspired solution
Model dependent convergence
Good precision

Reweighting for generic MC process
Reutilize samples (sampler agnostic)
Larger variance – worse precision

Apt for arbitrarily complicated observables
RW open for improvement: ML techniques to find
transformation f(x)

Reduce variance from disconnected contributions
LQCD state of the art use simple reweighting
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