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@ inclusive hadronic 7 lepton decay rate give access to the CKM matrix elements V4 and V.

@ until now the main focus was on the strange-hadronic decays and the determination of Vs

e standard OPE

e data fitting OPE

e gen. dispersion integrals
e K3 —K/ml2
o CKM unitarity

o 7 — 7w/ Kuv;, exclusive
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[Vis| = 0.2184(21)

[Vas| = 0.2219(22)

|Vius| = 0.2240(18)
|Vus| = 0.2248(6)
[Vis| = 0.2277(13)

|Vus| = 0.2222(17)
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In this work we perform for the first time a first—principles calculation of the inclusive
hadronic decay rate of the 7 lepton by using the Hansen-Lupo-Tantalo (HLT) method for
spectral density reconstruction
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@ in the Fermi effective theory, the squared decay—amplitude of the
T—lepton in the ud—flavored channel

A (7 = Xuavn)|? = Gl s, 0y 5™ (0] 724(0) | Xua@) (Xual)] 72,(0)1

2
Xud

G% |Vial? aB o 4(4) B /it
= ———— L% (pr,pv) (0] J54(0) (2m)"0"" (P — q) J,,4,(0)"|0)

2
o the leptonic tensor, evaluated in perturbation theory, reads
B ;
LY (prypy) = 4 {pfp?s + 7 — 9*ps ~pu} — 4ie** 7 pr 1y o
@ the hadronic tensor can be decomposed by relying on Lorentz covariance as

p*?(q) = (0] J54(0) (2m) "8 (P — ) J2,(0)" |0)

=q¢"¢" p(d®) + [qaq gang} pr(q®)
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o the decay rate is obtained by integrating over phase space the squared amplitude

p(T;:G%WudP/ &*p, d'q
" (

4m onaE, | fmyt @0 0 r —pe =) L (0rp) pas(a).

e by introducing s = ¢*/m2 = (pr — p,)?/m% = (1 — 2PmPr) we can write

F("’) 1
(n — wd 2 1-s)° 1
R = T (r = ev) 67 Sew |Vudl /Sh ds (1= 5)" {p(s) + (1 +2s) pr(s)}

where s, = m} /m?2 and my, the mass of the lightest final hadronic state
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@ on the lattice the primary data are Euclidean correlators that can be related to hadronic tensors by relying on
Poincaré, gauge and discrete (P, C, ...) symmetries

CoP (b, q) = / e T (0] Joy(x) e P 2, (0) [0) =
= (0] Jga(z) e Mt (2m)*6® (P — q) J2,(0)T |0) =

_ /OOO % e (0] J7a(0) (2m)* 8 (P — ) J4(0)"|0)

dE _g¢ B
= — E
/0 o € P ( s Q)

@ pr and pr. can be conveniently extracted from the correlators at zero spatial momentum according to

Cl(t)z/ ‘;—Ee*EtEQpI(E%, I=L,T
By 4T

CLt) = C™(t,0), Cr(t) = % S i, 0)
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the central object necessary for the computation of Rfd) are spectral densities pp /7

l

ideally the spectral densities are extracted from the correlators by performing an inverse Laplace transform

l

on the lattice the correlators can be evaluated only on a finite set of points and are affected by numerical uncertainties

On a finite volume spectral densities are d—trains

l

numerically ill-posed problem

l

smeared spectral densities are well defined quantities at finite volume and a noise regulator is necessary

l

Smeared kinematic factors play the role of the kernel entering in the inverse problem
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@ by taking into account the ElectroWeak short—distance correction Sgw

RU) = 67 Spw |Vial|® /oo ds (1 —8)? [pL(s) + (1 +25) pr(s)]0(1 — s)

2
5 [ dE E? E? 2 E?\ E? 5 E
:12TI'SEW|Vud| f (1 miqz_PL(E )+ 1+2m73— ﬁPT(E ) 01— —

m2

mp " e
127 Spw |Vua|® [ E L
_ L?M/ dE [KL (—) E?pL(E?) + Kr (—) EQm(EQ)}
mz mp, mr e

@ Where Kt and K are kinematical kernels

Ki(z) = % (1- :172)2 o1 — ), Ki(x) = (1+20%) Ko (a)
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o if f(x) is a smooth function such that f(z) ~ 0 as z — oo it can be approximated arbitrary well by a truncated
series of decreasing exponentials

@ by introducing a smeared version of the §—function

1 o [T o —axn
Os(z) = [P K{ (z) ~ K7 (x) = Z gi(n;o)e
n=1

@ by using this approximation we can trade the integral with a sum over the correlators

R (0) /

mp

oo

dE KY <£> E? py(E?)
m

= Z gl(n;a)/ dE e %P E2p1(E2)
n=1 mp

NMmax

=27 Z gi(n, o) Ci(na)
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o the g coefficients are obtained by minimizing the functional at a value A* in the statistically dominated regime

_ Aflgl

Wil [g] = Ao{ [0]

+ ABi[g]

Emax
Atlg) = / dE P

Emin

Tvmax
—aEn o 1)
> ot - k7 ()

n=1

max

Bilgl = Buom Y g1(n1) g1(n2) Covi(ani,ans)

ni,nz=1

o the residual error on the reconstruction: from the spread of the values of Rf;d’]) at \* and at A**, with the latter
defined by

Bl[gi\**] :HBI[Q?*] k=10
Ailg™] Ailg}’]

@ we can measure the quality of the kernel reconstruction by evaluating

Ajlg7]
Aj[0]

drlgr] =
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ensemble 153 v/ a’ a (fm) amyg M, (MeV) L (fm)

B4 1778 64%-128  0.07957 (13) 0.00072  140.2 (0.2)  5.09
B96 1778 96%-192  0.07957 (13) 0.00072  140.2 (0.2)  7.64
C80 1.836 80%-160  0.06821 (13)  0.00060 136.7 (0.2) 5.46
D96 1.900  96%-192  0.05692 (12) 0.00054  140.8 (0.2)  5.46
ensemble Neonf Nisources 2y Za

B64 776 ~10°  0.706379 (24)  0.74294 (24)

B9% 602 ~10°  0.706405 (17)  0.74267 (17)

C80 401 ~10°  0.725404 (19)  0.75830 (16)

D96 373 ~10°  0.744108 (12)  0.77395 (12)

@ Ny =2+ 1+ 1 flavours of Wilson-Clover twisted-mass fermions at maximal twist.
@ bare quark masses at (very close to) the physical pion—mass point
@ two regularizations: twisted mass (tm) and Osterwalder-Seiler (OS)

@ vector and axial currents renormalization constants computed by employing hadronic methods
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@ nmax = T'/2a @ Thmax = AFEmas = 00 with a =27

0 Emin = 0.05m, ~ 90 MeV ® Tmax € [4,5,6] with « € [3,4, 5]

@ atincreasing « the stability improves ——  compatibility of the results in a wide range of d [g]
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o results at fixed lattice spacing but different volumes are compatible within the errors (o = 4, rmaz = 4, 0 = 0.004)

2,05 - : -
>‘5 21 . . |
= 195 . o g % g OBE g |
© i
o e e
S sk : N {7
S 1Sk ; I BG4 = -
(-] ' P
=k : . B9G -~ .

7 . L . .

L7 0.01

drlg})

@ any difference of the results of the two volumes is considered as source of systematic effect
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@ combined fits: constant or linear in a?; averaged with a Bayesian model procedure (o = 4, rmaxz = 4, 0 = 0.004)

tm, L = codp 0OS, L = oco®
tm data, B64-B96 OS data, B64-BI6#|

3.44 | | . | |
0 0.001 0.002 0.003 0.004 0.005 0.006
a? [fm?]
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@ in the infinite—volume limit the hadronic spectral densities are expected to be regular at £ = m,

/ dE E?p;(E?)

0 mr
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this work 3.650 (28)  0.9752(39)  0.042 (5)
Hardy & Towner - 0.97373 (31) -
HFLAV 3.660 (8) - -
ALEPH 3.672 (15) - 0.026 (7)
OPAL 3.675 (18) - 0.013 (7)
=2 ALEPH = ALEPH e ALEPH
= OPAL —=— OPAL —a— OPAL
= HFLAV
This work This work This work
T? 175 18  1.85 1.9 1.95 2 1.85 19 2 43? 3.6 37 37 38 385




@ by reconstructing the relevant spectral densities from lattice correlators we performed for the first time a
first—principles calculation of the inclusive hadronic decay rate of the 7 lepton in the @d flavour—channel

@ our theoretical results for |V,4| are compatible within errors with the values obtained from nuclear 3 decay

@ our theoretical results for Rffd) /|Vua|? are compatible within errors with the values obtained from 7 decay
experiments

@ we reached an error of O(1%), comparable with the magnitude of the isospin-breaking effects

Next to do:
e extend our study to the inclusive process 7 — X5 Vr

e compute the leading isospin breaking effects
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by reconstructing the relevant spectral densities from lattice correlators we performed for the first time a
first—principles calculation of the inclusive hadronic decay rate of the 7 lepton in the ud flavour—channel

our theoretical results for |V,,q| are compatible within errors with the values obtained from nuclear 3 decay

our theoretical results for Rffd)/ |Vud|2 are compatible within errors with the values obtained from 7 decay
experiments

we reached an error of O(1%), comparable with the magnitude of the isospin-breaking effects

Next to do:
extend our study to the inclusive process 7 — Xys V-

compute the leading isospin breaking effects

Thanks for the attention !
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o the reconstruction of the kinematical kernel is less precise around the —function discontinuity

@ values of o > 2 improve (& finiteness of rmax does not harm) the kernel approximation accuracy at high energies

Exact kernel 2K(z) —
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+oo
R)(0) = /0 dz(1—2)* p(z) O, (1 - x) , ¢ = E/m,

p(x) =127 Spw |Vud|2 z(1+ a:)2 [pL(mixQ) +(1+ 23:2) pT(mzxz)]
By noticing the properties
x

Oy (x) = O1 (;) , O1(z) + O1(—x) =1, z” 9% [1—©1(z)] "=" O(e_'r) Vp,geN,

AR()(0) = R} (0) — R)

= /00 dz {6, (1—2)—0(1—a)} (1 —z)%p(z)

0

:/O“dx {@1(1;‘”>—0(1;x>}(1—x)25(w)

1

= / Ty {0 -0 W)} Bl —oy),  y=(1-z)/o




By splitting the integral appearing in the last line of the previous equation and by relying on the properties of the smeared
f—function,

B 0

Aﬂﬁw)—ﬁ{/}dyUGMM]fﬂlﬂD/

0 —oo

@GMwyﬁﬂaw},

Q=

——o{ [Ta -0 ] 51— on) - [T ayen (=) 4o | +0(F)

:gS/OOOdy [1-01(y)] v’ [p(1+oy) — p(1 — oy)] +(’)(e‘§) .

o until now we only assumed that 5(z) is a tempered distribution: it grows at most as a power in the z — oo limit

@ the behaviour of ARfZi) (o) w.rt. o is strongly dependent upon the behaviour of 5(x) around z = 1.



If we assume that p(z) = preg(2) is a Coo regular function at z = 1, the asymptotic expansion of AR(c) can readily be
obtained by using the Taylor series expansion of the spectral density in the previous equation

o~ AT (1)

prea(1+ oY) = Preg(1 —0y) =2 W(U )2t
n=0 :

and by defining the numeric coefficients

cg:/owdy [1-0: ()] v

We have

o AP

ARpeg(0) = 20° L
() T;) (2n+ 1)!

C2n+3 2n _ O(a4>



o we fitted the same dataset in N different ways obtaining {xx }x=1,...,n values

o their average Z and final uncertainty o, are given by

N N

N
2 2 —\2
= E WgTk , Ogx = Og,stat + E u.Jk(Q?k - {IJ) ) E wrp =1
k=1

k=1 k=1

I

where wy, is the weight associated to the k—th fit, and 0, s¢q: is the statistical error of Z.

o we choose the weights according to the Akaike Information Criterion (AIC)
Wi o< exp {— (5 + 2Njar = Nicas) /2}

where x2, Nfar and N . are respectively the chi-squared, the total number of fit parameters, and the total number
of measurements of the k—th fit.



@ in the finite volume the spectral densities are distributions since the Hamiltonian has a discrete spectrum

pr(E, ) = (0]7(0)(2m)*5 (P — )5 (B — Hy) J'(0) 0}, = 3 en(L)5(w — wn (L)

Hf — P 4 A HSG - PSS
@ integrals of smeared spectral densities can be studied at finite
volumes
—— p(E) unsmeared
61— P(E) £=0.5
2 — p:(F) €=0.1
2
a
I 0

e smeared spectral densities are smooth functions and studying their infinte volume limit is a well posed problem



