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Background

Gauge theory is the fundamental structure underlying the Standard Model and much of
BSM physics. We would like to “solve it completely."

Main theoretical tools:
perturbation theory
Euclidean lattice MC
semiclassics
large N
supersymmetry
EFT
anomaly matching
...

there are also questions about gauge theories that we do not know how to answer with
these techniques:
behavior of QCD at large baryon density
real time dynamics
theta dependence
phase structure of general chiral gauge theories
...
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Quantum Computing

A perfect quantum computer (large memory, ability to perform many operations without
accruing large errors) would be a great new tool to study quantum field theory and
tackle some of these open problems with simulations

Currently in the "noisy intermediate-scale quantum (NISQ)" era:
both the number of qbits and the number of operations that can be reliably performed
on them is limited

Will we ever exit the NISQ era?

But we can hope that the situation is qualitatively similar to the status of lattice MC fifty
years ago.
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Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices

Work in the Kogut-Susskind Hamiltonian formalism. Try to get the spectrum or perform
real-time evolution.

Even on a single link, the Hilbert space is infinite dimensional. Truncation is necessary

A complementary approach: Gauge dynamics in intermediate volumes using
dimensional reduction

All non-zero momentum modes are integrated out → QM of spatially constant∗∗

matrix-valued gauge fields

Dimensional reduction technique was pioneered in the 80s when classical computing
was limited.1 Some large L physics is captured near the small-large volume transition.

Also relevant for models of quantum gravity (BFSS, ...)

This talk: pure SU(2) & use VQE to extract low-lying energies.

1M. Luscher NPB219 (1983) 233-261; Luscher & Munster NPB232 (1984) 445-472; Koller & van Baal
NPB302 (1988) 1-64; van Baal hep-ph/0008206
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Hamiltonian and Symmetries

Pure YM on T 3 with length L:

H =
∫ L

0 d3x
(

1
2 g2Ea

k (x)E
a
k (x) +

1
2g2 Ba

k (x)B
a
k (x)

)

The gauge field satisfies periodic boundary conditions. It can be split into a spatially
constant part c and a varying part Q:

Aa
k (x⃗ , t) = ca

k (t) + Qa
k (x⃗ , t)

Integrating out Q we obtain the quantum mechanics of three particles in 3D interacting
via an effective Hamiltonian.
Because of residual gauge symmetries and the global Z2 electric center symmetry, it
turns out we can restrict the particles to move in a ball with certain boundary
conditions.
To understand the physics it is useful to digress a little bit.
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Vacuum Valley

The classical ground states are the solutions of F a
ij = 0 modulo the set of local gauge

transformations g(x) which are periodic on T 3.

It is sufficient to restrict to the sector of vanishing Chern-Simons number. Specializing
to SU(2) we can choose a gauge where the classical vacua are the spatially constant
Abelian gauge configurations:

Ai =
1

2L Ciσ3

This manifold is invariant under the residual gauge transformations:

g(x) = exp(-2πi x⃗ .k⃗ σ3
L )

g = σ1

C⃗ → C⃗ + 4πk⃗ and C⃗ → −C⃗
So the classical vacuum manifold spanned by C is the orbifold T 3/Z2. It is lifted by
quantum corrections, but the discrete global center symmetry is preserved.
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Electric flux quantum numbers

Twisted gauge transformations:

h(x) = exp(-2πi x⃗ .⃗n σ3
2L )

n ∈ {0, 1}. This symmetry is global because it is only periodic up to an element of the
Z2 center of SU(2).

On the vacuum valley, C⃗ → C⃗ + 2πn⃗
So even after quantum corrections, we expect 8 minima of the effective potential on
corners of a cube.
Eigenstates carry Bloch momenta e⃗:

∣∣ψ(Ah)
〉
= (−1)k⃗ .⃗e |ψ(A)⟩

e⃗ ∈ Z 3
2 is a Z2- valued electric flux.
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Effective Hamiltonian

It is preferable to work with the full set of zero momentum modes ca
i , not just the

vacuum valley, and to relax the gauge fixing that identified the v.v. direction with σ3.

Use three gauge-invariant “radial" coordinates ri =
√∑

a ca
i ca

i and associated angular
coordinates θi , ϕi .

The effective Hamiltonian takes the form

Heff = − 1
2L

(
1

g2 + α1

)−1
∂2

(∂ca
i )

2 + VT (c) + Vl(c)

VT (c) = 1
4

(
1

g2 + α2

)∑
i>j

(
r 2
i r 2

j − (r⃗i · r⃗j)
2
)
+ . . .

vanishes on v.v. (⃗r1 ∝ r⃗2 ∝ r⃗3)
Vl(c) is indep of angular variables, only involves powers of ri .
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Angular Wavefunctions

Angular wavefunction basis: spherical harmonics Yli ,mi (θi , ϕi)

Constant gauge transformations in the effective hamiltonian are simply rotations of the
three particles, so gauge invariance requires the total wavefunction to be an SO(3)
singlet :

L1 + L2 + L3 = 0

So the angular wave-function is:

|l1l2l3⟩ =
∑

m1m2m3
W (l1l2l3m1m2m3) |l1m1⟩ |l2m2⟩ |l3m3⟩

where W (l1l2l3m1m2m3) is the Wigner-coefficient.
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Radial Wavefunctions

Radial wavefunction basis: different possibilities. Spherical Bessels χ(e)
n,l (r) = jl(k

(e)
nl r)

good at stronger coupling. At weaker coupling an oscillator basis is better.

It turns out that by examining the action of center+Weyl symmetries, and the weak and
strong coupling limits, we can restrict the domain to the ball ri < π with boundary
conditions at ri = π determined by the electric flux.
The argument is somewhat involved (van Baal & Koller). It boils down to the fact that
ri = π are invariant under center and the boundary conditions are covariant, so they
correspond to sectors. Here we just quote the result:

(
∂
∂ri

)1−ei

(riχni li (ri))|ri=π = 0

ei is the Z2-valued electric flux for i−th particle. This determines the k (e)
nl .
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Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states

|l1l2l3n1n2n3; e⟩ =
∑

m1,m2,m3
W (l1l2l3m1m2m3)

∏3
i=1 χ

ei
ni li

(ri)Yli mi (θi , ϕi)

ni , li ∈ 0, 1, 2 . . . and |l1 − l2| ≤ l3 ≤ l1 + l2

Discrete symmetries of the effective Hamiltonian in e⃗ = 0⃗, e⃗ = (1, 1, 1)-sectors are the
cubic group of coordinate reflections Pica

k = −δik ca
k and coordinate permutations. For

other fluxes there is a smaller discrete symmetry.
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Irreps

We focus on irreps A+
1 (zero flux) and e+

1 (one unit of flux), both parity & perm even

The excitations of A+
1 are like scalar glueball masses and the gap between e+

1 and A+
1

ground states is like the string tension K (times L).

We construct the Hamiltonian classically using the basis |l1l2l3n1n2n3⟩.

The states are organized in an ascending order via eigenvalues of the free Hamiltonian
ϵ(l1, l2, l3, n1, n2, n3) =

1
2 (kn1,l1)

2 + 1
2 (kn2,l2)

2 + 1
2 (kn3,l3)

2

“Hamiltonian truncation" means some prescription for cutting off the basis, yielding a
finite Hilbert space. Then the Hamiltonian is just a matrix.
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Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

H =
3∑

i⃗=0

αi1...inσi1 ⊗ · · · ⊗ σin

Here 2n = M is the dimension of the Hilbert space.

Hamiltonian is dense – large number of Pauli strings, of order M2.

Classically we can easily study M ∼ 1000 states

M ∼ 1000 requires a 10-qubit device/simulator with O(106) Pauli string measurements.
M = 32 requires a 5-qubit device/simulator with O(103) Pauli string measurements.

We focus on M = 8, a 3-qubit system with 36 Pauli string measurements.
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VQE results for ground state

A single VQE run contains partial information since the initial point is random. This was
done QISKIT Aer simulator with 104 shots for each run.
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A+
1 results
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A+
1 exact results for M = [8, 1000] vs M = 8(3-qubit) VQE(Qiskit) results
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e+
1 results
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e+
1 exact results for M = [8, 1000] vs M = 8(3-qubit) VQE(Qiskit) results

The string tension is the difference in the 1-flux and the 0-flux ground state energies
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Excited state results
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Excited states measured using hybrid quantum subspace estimation algorithm2. Apply
some operators to the ground state, measure energies, solve GEVP

The glueball mass is the difference between the 1st excited and ground state energies
2Colless et al PhysRevX.8.011021
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String tension/glueball mass ratio
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-continuum result from Teper et al
-at stronger couplings the EFT breaks down
-IBM-Lima showed strong daily variation
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Future directions: Devices

Real device results tended to perform significantly worse than simulations + noise
models (this is why we did not show results with noise models.)

May be due to limitations of publicly available hardware; in the future will buy time on
other devices
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Future directions: Computational efficiency

At intermediate coupling g ∼ 1 − 1.5, the ansatzë are not very close to the true ground
state. barren plateau effects, outliers – need better ansatz, or stick to couplings where
more physics goes into the ansatz

Hanada et al have explored matrix models in a non-gauge-invariant Fock basis. Larger
Hilbert space but Hamiltonian might be simpler. Which performs better?

Improve computation: reduce measurements using commuting families of Pauli strings,
which have the same eigenvectors

can group 4n − 1 Paulis into 2n + 1 families of 2n − 1 commuting strings: reduce
measurement cost by a square root. Example: 7 qubits + dense Hamiltonian = O(104)
strings → O(102) strings measured.

possible to efficiently generate partitions of paulis into maximal commuting families.
generating lookup tables- see arXiv:2305.11847
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Thank you!
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