Quantum simulation of the Femtouniverse

Nouman Butt, UIUC

Aug 2, 2023

Lattice 2023 - Fermilab
based on arxiv:2211.10870 with Patrick Draper and Jiayu Shen

Background

Gauge theory is the fundamental structure underlying the Standard Model and much of BSM physics. We would like to "solve it completely."

Background

Gauge theory is the fundamental structure underlying the Standard Model and much of

 BSM physics. We would like to "solve it completely."Main theoretical tools:
perturbation theory
Euclidean lattice MC
semiclassics
large N
supersymmetry
EFT
anomaly matching

Background

Gauge theory is the fundamental structure underlying the Standard Model and much of BSM physics. We would like to "solve it completely."

Main theoretical tools:
perturbation theory
Euclidean lattice MC
semiclassics
large N
supersymmetry
EFT
anomaly matching
there are also questions about gauge theories that we do not know how to answer with these techniques:
behavior of QCD at large baryon density
real time dynamics
theta dependence
phase structure of general chiral gauge theories

Quantum Computing

Quantum Computing

A perfect quantum computer (large memory, ability to perform many operations without accruing large errors) would be a great new tool to study quantum field theory and tackle some of these open problems with simulations

Quantum Computing

A perfect quantum computer (large memory, ability to perform many operations without accruing large errors) would be a great new tool to study quantum field theory and tackle some of these open problems with simulations

Currently in the "noisy intermediate-scale quantum (NISQ)" era: both the number of qbits and the number of operations that can be reliably performed on them is limited

Quantum Computing

A perfect quantum computer (large memory, ability to perform many operations without accruing large errors) would be a great new tool to study quantum field theory and tackle some of these open problems with simulations

Currently in the "noisy intermediate-scale quantum (NISQ)" era: both the number of qbits and the number of operations that can be reliably performed on them is limited

Will we ever exit the NISQ era?
But we can hope that the situation is qualitatively similar to the status of lattice MC fifty years ago.

Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices

[^0] NPB302 (1988) 1-64; van Baal hep-ph/0008206

Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices
Work in the Kogut-Susskind Hamiltonian formalism. Try to get the spectrum or perform real-time evolution.

Even on a single link, the Hilbert space is infinite dimensional. Truncation is necessary

[^1]
Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices
Work in the Kogut-Susskind Hamiltonian formalism. Try to get the spectrum or perform real-time evolution.

Even on a single link, the Hilbert space is infinite dimensional. Truncation is necessary
A complementary approach: Gauge dynamics in intermediate volumes using dimensional reduction

[^2]
Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices
Work in the Kogut-Susskind Hamiltonian formalism. Try to get the spectrum or perform real-time evolution.

Even on a single link, the Hilbert space is infinite dimensional. Truncation is necessary
A complementary approach: Gauge dynamics in intermediate volumes using dimensional reduction

All non-zero momentum modes are integrated out \rightarrow QM of spatially constant** matrix-valued gauge fields

[^3]
Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices
Work in the Kogut-Susskind Hamiltonian formalism. Try to get the spectrum or perform real-time evolution.

Even on a single link, the Hilbert space is infinite dimensional. Truncation is necessary
A complementary approach: Gauge dynamics in intermediate volumes using dimensional reduction

All non-zero momentum modes are integrated out \rightarrow QM of spatially constant** matrix-valued gauge fields

Dimensional reduction technique was pioneered in the 80s when classical computing was limited. ${ }^{1}$ Some large L physics is captured near the small-large volume transition.

Also relevant for models of quantum gravity (BFSS, ...)

[^4]
Quantum simulation of gauge theory

One line of attack is to work with low-dimensional gauge theories on small lattices
Work in the Kogut-Susskind Hamiltonian formalism. Try to get the spectrum or perform real-time evolution.

Even on a single link, the Hilbert space is infinite dimensional. Truncation is necessary
A complementary approach: Gauge dynamics in intermediate volumes using dimensional reduction

> All non-zero momentum modes are integrated out \rightarrow QM of spatially constant** matrix-valued gauge fields

Dimensional reduction technique was pioneered in the 80s when classical computing was limited. ${ }^{1}$ Some large L physics is captured near the small-large volume transition.

Also relevant for models of quantum gravity (BFSS, ...)
This talk: pure $\operatorname{SU}(2)$ \& use VQE to extract low-lying energies.

[^5]
Hamiltonian and Symmetries

Pure $Y M$ on T^{3} with length L :

$$
\mathrm{H}=\int_{0}^{L} d^{3} x\left(\frac{1}{2} g^{2} E_{k}^{a}(x) E_{k}^{a}(x)+\frac{1}{2 g^{2}} B_{k}^{a}(x) B_{k}^{a}(x)\right)
$$

Hamiltonian and Symmetries

Pure $Y M$ on T^{3} with length L :
$\mathrm{H}=\int_{0}^{L} d^{3} x\left(\frac{1}{2} g^{2} E_{k}^{a}(x) E_{k}^{a}(x)+\frac{1}{2 g^{2}} B_{k}^{a}(x) B_{k}^{a}(x)\right)$
The gauge field satisfies periodic boundary conditions. It can be split into a spatially constant part c and a varying part Q :

$$
\mathrm{A}_{k}^{a}(\vec{x}, t)=c_{k}^{a}(t)+Q_{k}^{a}(\vec{x}, t)
$$

Hamiltonian and Symmetries

Pure $Y M$ on T^{3} with length L :
$\mathrm{H}=\int_{0}^{L} d^{3} x\left(\frac{1}{2} g^{2} E_{k}^{a}(x) E_{k}^{a}(x)+\frac{1}{2 g^{2}} B_{k}^{a}(x) B_{k}^{a}(x)\right)$
The gauge field satisfies periodic boundary conditions. It can be split into a spatially constant part c and a varying part Q :

$$
\mathrm{A}_{k}^{a}(\vec{x}, t)=c_{k}^{a}(t)+Q_{k}^{a}(\vec{x}, t)
$$

Integrating out Q we obtain the quantum mechanics of three particles in 3D interacting via an effective Hamiltonian.

Hamiltonian and Symmetries

Pure $Y M$ on T^{3} with length L :
$\mathrm{H}=\int_{0}^{L} d^{3} x\left(\frac{1}{2} g^{2} E_{k}^{a}(x) E_{k}^{a}(x)+\frac{1}{2 g^{2}} B_{k}^{a}(x) B_{k}^{a}(x)\right)$
The gauge field satisfies periodic boundary conditions. It can be split into a spatially constant part c and a varying part Q :

$$
\mathrm{A}_{k}^{a}(\vec{x}, t)=c_{k}^{a}(t)+Q_{k}^{a}(\vec{x}, t)
$$

Integrating out Q we obtain the quantum mechanics of three particles in 3D interacting via an effective Hamiltonian.
Because of residual gauge symmetries and the global Z_{2} electric center symmetry, it turns out we can restrict the particles to move in a ball with certain boundary conditions.

Hamiltonian and Symmetries

Pure $Y M$ on T^{3} with length L :
$\mathrm{H}=\int_{0}^{L} d^{3} x\left(\frac{1}{2} g^{2} E_{k}^{a}(x) E_{k}^{a}(x)+\frac{1}{2 g^{2}} B_{k}^{a}(x) B_{k}^{a}(x)\right)$
The gauge field satisfies periodic boundary conditions. It can be split into a spatially constant part c and a varying part Q :
$\mathrm{A}_{k}^{a}(\vec{x}, t)=c_{k}^{a}(t)+Q_{k}^{a}(\vec{x}, t)$
Integrating out Q we obtain the quantum mechanics of three particles in 3D interacting via an effective Hamiltonian.
Because of residual gauge symmetries and the global Z_{2} electric center symmetry, it turns out we can restrict the particles to move in a ball with certain boundary conditions.
To understand the physics it is useful to digress a little bit.

Vacuum Valley

The classical ground states are the solutions of $F_{i j}^{a}=0$ modulo the set of local gauge transformations $g(x)$ which are periodic on T^{3}.

Vacuum Valley

The classical ground states are the solutions of $F_{i j}^{a}=0$ modulo the set of local gauge transformations $g(x)$ which are periodic on T^{3}.
It is sufficient to restrict to the sector of vanishing Chern-Simons number. Specializing to $S U(2)$ we can choose a gauge where the classical vacua are the spatially constant Abelian gauge configurations:

$$
\mathrm{A}_{i}=\frac{1}{2 L} C_{i} \sigma_{3}
$$

Vacuum Valley

The classical ground states are the solutions of $F_{i j}^{a}=0$ modulo the set of local gauge transformations $g(x)$ which are periodic on T^{3}.
It is sufficient to restrict to the sector of vanishing Chern-Simons number. Specializing to $S U(2)$ we can choose a gauge where the classical vacua are the spatially constant Abelian gauge configurations:

$$
\mathrm{A}_{i}=\frac{1}{2 L} C_{i} \sigma_{3}
$$

This manifold is invariant under the residual gauge transformations:

$$
\begin{aligned}
& g(x)=\exp \left(-2 \pi i \vec{x} \cdot \vec{k} \frac{\sigma_{3}}{L}\right) \\
& g=\sigma_{1}
\end{aligned}
$$

$$
\vec{C} \rightarrow \vec{C}+4 \pi \vec{k} \text { and } \vec{C} \rightarrow-\vec{C}
$$

Vacuum Valley

The classical ground states are the solutions of $F_{i j}^{a}=0$ modulo the set of local gauge transformations $g(x)$ which are periodic on T^{3}.
It is sufficient to restrict to the sector of vanishing Chern-Simons number. Specializing to $S U(2)$ we can choose a gauge where the classical vacua are the spatially constant Abelian gauge configurations:

$$
\mathrm{A}_{i}=\frac{1}{2 L} C_{i} \sigma_{3}
$$

This manifold is invariant under the residual gauge transformations:

$$
\begin{aligned}
& g(x)=\exp \left(-2 \pi i \vec{x} \cdot \vec{k} \frac{\sigma_{3}}{L}\right) \\
& g=\sigma_{1}
\end{aligned}
$$

$\vec{C} \rightarrow \vec{C}+4 \pi \vec{k}$ and $\vec{C} \rightarrow-\vec{C}$
So the classical vacuum manifold spanned by C is the orbifold T^{3} / Z_{2}. It is lifted by quantum corrections, but the discrete global center symmetry is preserved.

Electric flux quantum numbers

Twisted gauge transformations:

$$
\mathrm{h}(\mathrm{x})=\exp \left(-2 \pi i \vec{X} \cdot \overrightarrow{n_{2}} \frac{\sigma_{3}}{2 L}\right)
$$

$n \in\{0,1\}$. This symmetry is global because it is only periodic up to an element of the Z_{2} center of $S U(2)$.

Electric flux quantum numbers

Twisted gauge transformations:

$$
\mathrm{h}(\mathrm{x})=\exp \left(-2 \pi i \vec{x} \cdot \overrightarrow{n_{2}} \frac{\sigma_{3}}{2 L}\right)
$$

$n \in\{0,1\}$. This symmetry is global because it is only periodic up to an element of the Z_{2} center of $S U(2)$.
On the vacuum valley, $\vec{C} \rightarrow \vec{C}+2 \pi \vec{n}$
So even after quantum corrections, we expect 8 minima of the effective potential on corners of a cube.

Electric flux quantum numbers

Twisted gauge transformations:

$$
\mathrm{h}(\mathrm{x})=\exp \left(-2 \pi i \vec{i} \cdot \overrightarrow{n_{2}} \frac{\sigma_{3}}{2 L}\right)
$$

$n \in\{0,1\}$. This symmetry is global because it is only periodic up to an element of the Z_{2} center of $S U(2)$.
On the vacuum valley, $\vec{C} \rightarrow \vec{C}+2 \pi \vec{n}$
So even after quantum corrections, we expect 8 minima of the effective potential on corners of a cube.
Eigenstates carry Bloch momenta \vec{e} :
$\left|\psi\left(A^{h}\right)\right\rangle=(-1)^{\vec{k} \cdot \vec{e}}|\psi(A)\rangle$
$\vec{e} \in Z_{2}^{3}$ is a Z_{2} - valued electric flux.

Effective Hamiltonian

It is preferable to work with the full set of zero momentum modes c_{i}^{a}, not just the vacuum valley, and to relax the gauge fixing that identified the v.v. direction with σ_{3}.

Effective Hamiltonian

It is preferable to work with the full set of zero momentum modes c_{i}^{a}, not just the vacuum valley, and to relax the gauge fixing that identified the v.v. direction with σ_{3}.
Use three gauge-invariant "radial" coordinates $r_{i}=\sqrt{\sum_{a} c_{i}^{a} c_{i}^{a}}$ and associated angular coordinates θ_{i}, ϕ_{i}.

Effective Hamiltonian

It is preferable to work with the full set of zero momentum modes c_{i}^{a}, not just the vacuum valley, and to relax the gauge fixing that identified the v.v. direction with σ_{3}.
Use three gauge-invariant "radial" coordinates $r_{i}=\sqrt{\sum_{a} c_{i}^{a} c_{i}^{a}}$ and associated angular coordinates θ_{i}, ϕ_{i}.
The effective Hamiltonian takes the form
$\mathrm{H}_{\text {eff }}=-\frac{1}{2 L}\left(\frac{1}{g^{2}}+\alpha_{1}\right)^{-1} \frac{\partial^{2}}{\left(\partial c_{i}^{2}\right)^{2}}+V_{T}(c)+V_{l}(c)$
$V_{T}(c)=\frac{1}{4}\left(\frac{1}{g^{2}}+\alpha_{2}\right) \sum_{i>j}\left(r_{i}^{2} r_{j}^{2}-\left(\vec{r}_{i} \cdot \vec{r}_{j}\right)^{2}\right)+\ldots$
vanishes on v.v. $\left(\vec{r}_{1} \propto \vec{r}_{2} \propto \vec{r}_{3}\right)$
$V_{l}(c)$ is indep of angular variables, only involves powers of r_{i}.

Angular Wavefunctions

Angular wavefunction basis: spherical harmonics $Y_{l_{i}, m_{i}}\left(\theta_{i}, \phi_{i}\right)$

Angular Wavefunctions

Angular wavefunction basis: spherical harmonics $Y_{l_{i}, m_{i}}\left(\theta_{i}, \phi_{i}\right)$
Constant gauge transformations in the effective hamiltonian are simply rotations of the three particles, so gauge invariance requires the total wavefunction to be an $\mathrm{SO}(3)$ singlet :
$\boldsymbol{L}_{1}+\boldsymbol{L}_{2}+\boldsymbol{L}_{3}=\mathbf{0}$

Angular Wavefunctions

Angular wavefunction basis: spherical harmonics $Y_{l_{i}, m_{i}}\left(\theta_{i}, \phi_{i}\right)$
Constant gauge transformations in the effective hamiltonian are simply rotations of the three particles, so gauge invariance requires the total wavefunction to be an $\mathrm{SO}(3)$ singlet :

$$
\boldsymbol{L}_{1}+\boldsymbol{L}_{2}+\boldsymbol{L}_{3}=0
$$

So the angular wave-function is:

$$
\left|I_{1} l_{2} l_{3}\right\rangle=\sum_{m_{1} m_{2} m_{3}} W\left(I_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right)\left|l_{1} m_{1}\right\rangle\left|l_{2} m_{2}\right\rangle\left|l_{3} m_{3}\right\rangle
$$

where $W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right)$ is the Wigner-coefficient.

Radial Wavefunctions

Radial wavefunction basis: different possibilities. Spherical Bessels $\chi_{n, l}^{(e)}(r)=j_{l}\left(k_{n l}^{(e)} r\right)$ good at stronger coupling. At weaker coupling an oscillator basis is better.

Radial Wavefunctions

Radial wavefunction basis: different possibilities. Spherical Bessels $\chi_{n, l}^{(e)}(r)=j_{l}\left(k_{n l}^{(e)} r\right)$ good at stronger coupling. At weaker coupling an oscillator basis is better.

It turns out that by examining the action of center+Weyl symmetries, and the weak and strong coupling limits, we can restrict the domain to the ball $r_{i}<\pi$ with boundary conditions at $r_{i}=\pi$ determined by the electric flux.

Radial Wavefunctions

Radial wavefunction basis: different possibilities. Spherical Bessels $\chi_{n, l}^{(e)}(r)=j_{l}\left(k_{n l}^{(e)} r\right)$ good at stronger coupling. At weaker coupling an oscillator basis is better.
It turns out that by examining the action of center+Weyl symmetries, and the weak and strong coupling limits, we can restrict the domain to the ball $r_{i}<\pi$ with boundary conditions at $r_{i}=\pi$ determined by the electric flux.
The argument is somewhat involved (van Baal \& Koller). It boils down to the fact that $r_{i}=\pi$ are invariant under center and the boundary conditions are covariant, so they correspond to sectors. Here we just quote the result:

$$
\left.\left(\frac{\partial}{\partial r_{i}}\right)^{1-e_{i}}\left(r_{i} \chi_{n_{i} l_{i}}\left(r_{i}\right)\right)\right|_{r_{i}=\pi}=0
$$

e_{i} is the Z_{2}-valued electric flux for i-th particle. This determines the $k_{n l}^{(e)}$.

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states

$$
\left|l_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)
$$

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states
$\left|I_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)$
$n_{i}, l_{i} \in 0,1,2 \ldots$ and $\left|l_{1}-l_{2}\right| \leq l_{3} \leq l_{1}+l_{2}$

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states
$\left|I_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)$
$n_{i}, l_{i} \in 0,1,2 \ldots$ and $\left|l_{1}-l_{2}\right| \leq l_{3} \leq l_{1}+l_{2}$
Discrete symmetries of the effective Hamiltonian in $\vec{e}=\overrightarrow{0}, \vec{e}=(1,1,1)$-sectors are the cubic group of coordinate reflections $P_{i} c_{k}^{a}=-\delta_{i k} c_{k}^{a}$ and coordinate permutations. For other fluxes there is a smaller discrete symmetry.

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states
$\left|l_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)$
$n_{i}, l_{i} \in 0,1,2 \ldots$ and $\left|l_{1}-l_{2}\right| \leq l_{3} \leq l_{1}+l_{2}$
Discrete symmetries of the effective Hamiltonian in $\vec{e}=\overrightarrow{0}, \vec{e}=(1,1,1)$-sectors are the cubic group of coordinate reflections $P_{i} c_{k}^{a}=-\delta_{i k} c_{k}^{a}$ and coordinate permutations. For other fluxes there is a smaller discrete symmetry.

Action on the states:

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states
$\left|I_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)$
$n_{i}, l_{i} \in 0,1,2 \ldots$ and $\left|l_{1}-l_{2}\right| \leq l_{3} \leq l_{1}+l_{2}$
Discrete symmetries of the effective Hamiltonian in $\vec{e}=\overrightarrow{0}, \vec{e}=(1,1,1)$-sectors are the cubic group of coordinate reflections $P_{i} c_{k}^{a}=-\delta_{i k} c_{k}^{a}$ and coordinate permutations. For other fluxes there is a smaller discrete symmetry.

Action on the states:
$P_{i}\left|I_{1} I_{2} I_{3}\right\rangle=(-1)^{I_{i}}\left|I_{1} I_{2} I_{3}\right\rangle$

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states
$\left|l_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)$
$n_{i}, l_{i} \in 0,1,2 \ldots$ and $\left|l_{1}-l_{2}\right| \leq l_{3} \leq l_{1}+l_{2}$
Discrete symmetries of the effective Hamiltonian in $\vec{e}=\overrightarrow{0}, \vec{e}=(1,1,1)$-sectors are the cubic group of coordinate reflections $P_{i} c_{k}^{a}=-\delta_{i k} c_{k}^{a}$ and coordinate permutations. For other fluxes there is a smaller discrete symmetry.

Action on the states:
$P_{i}\left|I_{1} I_{2} I_{3}\right\rangle=(-1)^{I_{i}}\left|I_{1} I_{2} I_{3}\right\rangle$
$\pi\left|I_{1} I_{2} I_{3} n_{1} n_{2} n_{3}\right\rangle=\left|I_{\pi(1)} I_{\pi(2)} I_{\pi(3)} n_{\pi(1)} n_{\pi(2)} n_{\pi(3)}\right\rangle$

Full Wavefunctions

Gauge-invariant Rayleigh-Ritz basis consists of states
$\left|l_{1} l_{2} l_{3} n_{1} n_{2} n_{3} ; \boldsymbol{e}\right\rangle=\sum_{m_{1}, m_{2}, m_{3}} W\left(l_{1} l_{2} l_{3} m_{1} m_{2} m_{3}\right) \prod_{i=1}^{3} \chi_{n_{i} l_{i}}^{e_{i}}\left(r_{i}\right) Y_{l_{i} m_{i}}\left(\theta_{i}, \phi_{i}\right)$
$n_{i}, l_{i} \in 0,1,2 \ldots$ and $\left|l_{1}-l_{2}\right| \leq l_{3} \leq l_{1}+l_{2}$
Discrete symmetries of the effective Hamiltonian in $\vec{e}=\overrightarrow{0}, \vec{e}=(1,1,1)$-sectors are the cubic group of coordinate reflections $P_{i} c_{k}^{a}=-\delta_{i k} c_{k}^{a}$ and coordinate permutations. For other fluxes there is a smaller discrete symmetry.

Action on the states:
$P_{i}\left|I_{1} I_{2} I_{3}\right\rangle=(-1)^{I_{i}}\left|I_{1} I_{2} I_{3}\right\rangle$
$\pi\left|I_{1} I_{2} I_{3} n_{1} n_{2} n_{3}\right\rangle=\left|I_{\pi(1)} I_{\pi(2)} I_{\pi(3)} n_{\pi(1)} n_{\pi(2)} n_{\pi(3)}\right\rangle$

Irreps

We focus on irreps A_{1}^{+}(zero flux) and e_{1}^{+}(one unit of flux), both parity \& perm even
The excitations of A_{1}^{+}are like scalar glueball masses and the gap between e_{1}^{+}and A_{1}^{+} ground states is like the string tension K (times L).

Irreps

We focus on irreps A_{1}^{+}(zero flux) and e_{1}^{+}(one unit of flux), both parity \& perm even
The excitations of A_{1}^{+}are like scalar glueball masses and the gap between e_{1}^{+}and A_{1}^{+} ground states is like the string tension K (times L). We construct the Hamiltonian classically using the basis $\left|l_{1} I_{2} l_{3} n_{1} n_{2} n_{3}\right\rangle$.

Irreps

We focus on irreps A_{1}^{+}(zero flux) and e_{1}^{+}(one unit of flux), both parity \& perm even
The excitations of A_{1}^{+}are like scalar glueball masses and the gap between e_{1}^{+}and A_{1}^{+} ground states is like the string tension K (times L). We construct the Hamiltonian classically using the basis $\left|l_{1} I_{2} l_{3} n_{1} n_{2} n_{3}\right\rangle$.

The states are organized in an ascending order via eigenvalues of the free Hamiltonian $\epsilon\left(l_{1}, l_{2}, l_{3}, n_{1}, n_{2}, n_{3}\right)=\frac{1}{2}\left(k_{n_{1}, l_{1}}\right)^{2}+\frac{1}{2}\left(k_{n_{2}, l_{2}}\right)^{2}+\frac{1}{2}\left(k_{n_{3}, l_{3}}\right)^{2}$

Irreps

We focus on irreps A_{1}^{+}(zero flux) and e_{1}^{+}(one unit of flux), both parity \& perm even
The excitations of A_{1}^{+}are like scalar glueball masses and the gap between e_{1}^{+}and A_{1}^{+} ground states is like the string tension K (times L). We construct the Hamiltonian classically using the basis $\left|l_{1} l_{2} l_{3} n_{1} n_{2} n_{3}\right\rangle$.

The states are organized in an ascending order via eigenvalues of the free Hamiltonian $\epsilon\left(l_{1}, l_{2}, l_{3}, n_{1}, n_{2}, n_{3}\right)=\frac{1}{2}\left(k_{n_{1}, l_{1}}\right)^{2}+\frac{1}{2}\left(k_{n_{2}, l_{2}}\right)^{2}+\frac{1}{2}\left(k_{n_{3}, l_{3}}\right)^{2}$
"Hamiltonian truncation" means some prescription for cutting off the basis, yielding a finite Hilbert space. Then the Hamiltonian is just a matrix.

Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

$$
H=\sum_{\vec{i}=0}^{3} \alpha_{i_{1} \ldots i_{n}} \sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}
$$

Here $2^{n}=M$ is the dimension of the Hilbert space.

Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

$$
H=\sum_{\vec{i}=0}^{3} \alpha_{i_{1} \ldots i_{n}} \sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}
$$

Here $2^{n}=M$ is the dimension of the Hilbert space.

Hamiltonian is dense - large number of Pauli strings, of order M^{2}.

Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

$$
H=\sum_{\vec{i}=0}^{3} \alpha_{i_{1} \ldots i_{n}} \sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}
$$

Here $2^{n}=M$ is the dimension of the Hilbert space.

Hamiltonian is dense - large number of Pauli strings, of order M^{2}.
Classically we can easily study $M \sim 1000$ states

Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

$$
H=\sum_{\vec{i}=0}^{3} \alpha_{i_{1} \ldots i_{n}} \sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}
$$

Here $2^{n}=M$ is the dimension of the Hilbert space.

Hamiltonian is dense - large number of Pauli strings, of order M^{2}.
Classically we can easily study $M \sim 1000$ states
$M \sim 1000$ requires a 10 -qubit device/simulator with $O\left(10^{6}\right)$ Pauli string measurements.

Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

$$
H=\sum_{\vec{i}=0}^{3} \alpha_{i_{1} \ldots i_{n}} \sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}
$$

Here $2^{n}=M$ is the dimension of the Hilbert space.

Hamiltonian is dense - large number of Pauli strings, of order M^{2}.
Classically we can easily study $M \sim 1000$ states
$M \sim 1000$ requires a 10 -qubit device/simulator with $O\left(10^{6}\right)$ Pauli string measurements. $M=32$ requires a 5 -qubit device/simulator with $O\left(10^{3}\right)$ Pauli string measurements.

Numerical results

We expand the truncated Hamiltonian matrix in terms of Pauli strings:

$$
H=\sum_{\vec{i}=0}^{3} \alpha_{i_{1} \ldots i_{n}} \sigma_{i_{1}} \otimes \cdots \otimes \sigma_{i_{n}}
$$

Here $2^{n}=M$ is the dimension of the Hilbert space.

Hamiltonian is dense - large number of Pauli strings, of order M^{2}.
Classically we can easily study $M \sim 1000$ states
$M \sim 1000$ requires a 10 -qubit device/simulator with $O\left(10^{6}\right)$ Pauli string measurements. $M=32$ requires a 5 -qubit device/simulator with $O\left(10^{3}\right)$ Pauli string measurements.

We focus on $M=8$, a 3 -qubit system with 36 Pauli string measurements.

VQE results for ground state

A single VQE run contains partial information since the initial point is random. This was done QISKIT Aer simulator with 10^{4} shots for each run.

VQE results for ground state

A single VQE run contains partial information since the initial point is random. This was done QISKIT Aer simulator with 10^{4} shots for each run.

VQE results for ground state

A single VQE run contains partial information since the initial point is random. This was done QISKIT Aer simulator with 10^{4} shots for each run.

A_{1}^{+}results

A_{1}^{+}exact results for $M=[8,1000]$ vs $M=8(3$-qubit) VQE(Qiskit) results

e_{1}^{+}results

e_{1}^{+}exact results for $M=[8,1000]$ vs $M=8(3$-qubit) VQE(Qiskit) results
The string tension is the difference in the 1 -flux and the 0 -flux ground state energies

Excited state results

Excited states measured using hybrid quantum subspace estimation algorithm ${ }^{2}$. Apply some operators to the ground state, measure energies, solve GEVP

The glueball mass is the difference between the 1st excited and ground state energies
${ }^{2}$ Colless et al PhysRevX.8.011021

String tension/glueball mass ratio

-continuum result from Teper et al -at stronger couplings the EFT breaks down
-IBM-Lima showed strong daily variation

Future directions: Devices

Real device results tended to perform significantly worse than simulations + noise models (this is why we did not show results with noise models.)

Future directions: Devices

Real device results tended to perform significantly worse than simulations + noise models (this is why we did not show results with noise models.)

May be due to limitations of publicly available hardware; in the future will buy time on other devices

Future directions: Computational efficiency

At intermediate coupling $g \sim 1-1.5$, the ansatzë are not very close to the true ground state. barren plateau effects, outliers - need better ansatz, or stick to couplings where more physics goes into the ansatz

Future directions: Computational efficiency

At intermediate coupling $g \sim 1-1.5$, the ansatzë are not very close to the true ground state. barren plateau effects, outliers - need better ansatz, or stick to couplings where more physics goes into the ansatz

Hanada et al have explored matrix models in a non-gauge-invariant Fock basis. Larger Hilbert space but Hamiltonian might be simpler. Which performs better?

Future directions: Computational efficiency

At intermediate coupling $g \sim 1-1.5$, the ansatzë are not very close to the true ground state. barren plateau effects, outliers - need better ansatz, or stick to couplings where more physics goes into the ansatz

Hanada et al have explored matrix models in a non-gauge-invariant Fock basis. Larger Hilbert space but Hamiltonian might be simpler. Which performs better?

Improve computation: reduce measurements using commuting families of Pauli strings, which have the same eigenvectors

Future directions: Computational efficiency

At intermediate coupling $g \sim 1-1.5$, the ansatzë are not very close to the true ground state. barren plateau effects, outliers - need better ansatz, or stick to couplings where more physics goes into the ansatz

Hanada et al have explored matrix models in a non-gauge-invariant Fock basis. Larger Hilbert space but Hamiltonian might be simpler. Which performs better?

Improve computation: reduce measurements using commuting families of Pauli strings, which have the same eigenvectors
can group $4^{n}-1$ Paulis into $2^{n}+1$ families of $2^{n}-1$ commuting strings: reduce measurement cost by a square root. Example: 7 qubits + dense Hamiltonian $=O\left(10^{4}\right)$ strings $\rightarrow O\left(10^{2}\right)$ strings measured.

Future directions: Computational efficiency

At intermediate coupling $g \sim 1-1.5$, the ansatzë are not very close to the true ground state. barren plateau effects, outliers - need better ansatz, or stick to couplings where more physics goes into the ansatz

Hanada et al have explored matrix models in a non-gauge-invariant Fock basis. Larger Hilbert space but Hamiltonian might be simpler. Which performs better?

Improve computation: reduce measurements using commuting families of Pauli strings, which have the same eigenvectors
can group $4^{n}-1$ Paulis into $2^{n}+1$ families of $2^{n}-1$ commuting strings: reduce measurement cost by a square root. Example: 7 qubits + dense Hamiltonian $=O\left(10^{4}\right)$ strings $\rightarrow O\left(10^{2}\right)$ strings measured.
possible to efficiently generate partitions of paulis into maximal commuting families. generating lookup tables- see arXiv:2305.11847

Thank you!

[^0]: ${ }^{1}$ M. Luscher NPB219 (1983) 233-261; Luscher \& Munster NPB232 (1984) 445-472; Koller \& van Baal

[^1]: ${ }^{1}$ M. Luscher NPB219 (1983) 233-261; Luscher \& Munster NPB232 (1984) 445-472; Koller \& van Baal NPB302 (1988) 1-64; van Baal hep-ph/0008206

[^2]: ${ }^{1}$ M. Luscher NPB219 (1983) 233-261; Luscher \& Munster NPB232 (1984) 445-472; Koller \& van Baal NPB302 (1988) 1-64; van Baal hep-ph/0008206

[^3]: ${ }^{1}$ M. Luscher NPB219 (1983) 233-261; Luscher \& Munster NPB232 (1984) 445-472; Koller \& van Baal NPB302 (1988) 1-64; van Baal hep-ph/0008206

[^4]: ${ }^{1}$ M. Luscher NPB219 (1983) 233-261; Luscher \& Munster NPB232 (1984) 445-472; Koller \& van Baal NPB302 (1988) 1-64; van Baal hep-ph/0008206

[^5]: ${ }^{1}$ M. Luscher NPB219 (1983) 233-261; Luscher \& Munster NPB232 (1984) 445-472; Koller \& van Baal NPB302 (1988) 1-64; van Baal hep-ph/0008206

