Neutrinoless Double Beta Decay from Lattice QCD: The $n^{0} n^{0} \rightarrow p^{+} p^{+} e^{-} e^{-} \quad$ Amplitude

Will Detmold, Zhenghao Fu, Anthony Grebe, Will Jay, David Murphy, Patrick Oare, Phiala Shanahan

July 31st, 2023

Neutrinoless double $\beta(0 \nu \beta \beta)$ decay

- $0 \nu \beta \beta$ decay is a hypothetical process:

$$
n^{0} n^{0} \rightarrow p^{+} p^{+} e^{-} e^{-}
$$

which, if observed, would:

- Violate lepton number (really $B-L$).
- Show that neutrinos are Majorana particles.

Above: quark-level process inducing $0 \nu \beta \beta$ decay.

- Experiments looking for $0 \nu \beta \beta$ decay in heavy nuclei (i.e. ${ }^{76} \mathrm{Ge},{ }^{136} \mathrm{Xe}$).
- Cannot directly compute matrix elements (MEs) in these nuclei with LQCD.
- Instead, use LQCD to compute inputs to EFT in the form of low-energy constants (LECs), and use EFT to study nuclear $0 \nu \beta \beta$ decay.

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Light Majorana exchange

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Heavy neutrino exchange

Light Majorana exchange

"short-distance"

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Heavy neutrino exchange

$0 \nu \beta \beta$ decay mechanisms

- Models are characterized by whether the decay is induced by non-local interactions (long-distance) or local interactions (short-distance).

Lattice setup

- One ensemble \Longrightarrow no continuum, infinite-volume, or chiral extrapolation.
- This ensemble uses the following discretizations and parameters:
- Gauge field: Lüscher-Weisz, $O(a)$ improved action.
- Fermions: $n_{f}=3$ degenerate light quarks, Wilson-Clover action.

L	T	β	$a m_{q}$	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$n_{\text {cfg }}$
32	48	6.1	-0.2450	0.145	806	12,139

Two-point functions

$$
\begin{aligned}
& \mathcal{O}_{n n}=\text { dineutron interpolator } \\
& \mathcal{O}_{p p}=\text { diproton interpolator }
\end{aligned}
$$

- Two-point functions computed with wall source and point sink.

Wall source

Point sink

$$
C_{2}(t)=\sum_{\mathbf{x}}\left\langle\mathcal{O}_{p p}(\mathbf{x}, t) \mathcal{O}_{p p}^{\dagger}(0)\right\rangle
$$

Two-point functions

$$
\begin{aligned}
& \mathcal{O}_{n n}=\text { dineutron interpolator } \\
& \mathcal{O}_{p p}=\text { diproton interpolator }
\end{aligned}
$$

- Two-point functions computed with wall source and point sink.

Long-distance $0 \nu \beta \beta$ decay

- Induced by light Majorana neutrino exchange.

Long-distance $0 \nu \beta \beta$ decay

- Induced by light Majorana neutrino exchange.
- Long-distance ME $M^{0 \nu}$ expressed in terms of the
 electroweak Hamiltonian $\mathscr{H}_{W}=2 \sqrt{2} G_{F} V_{u d}\left(\bar{e} \gamma^{\mu} P_{L} \nu_{e}\right) J_{\mu}$.

$$
M^{0 \nu}=\int d^{4} x d^{4} y\langle p p e e| \mathcal{T}\left\{\mathcal{H}_{W}(x) \mathcal{H}_{W}(y)\right\}|n n\rangle
$$

Charged current, $J_{\mu}=\bar{u}_{L} \gamma_{\mu} d_{L}$

Long-distance $0 \nu \beta \beta$ decay

- Induced by light Majorana neutrino exchange.
- Long-distance ME $M^{0 \nu}$ expressed in terms of the
 electroweak Hamiltonian $\mathscr{H}_{W}=2 \sqrt{2} G_{F} V_{u d}\left(\bar{e} \gamma^{\mu} P_{L} \nu_{e}\right) J_{\mu}$.

$$
M^{0 \nu}=\int d^{4} x d^{4} y\langle p p e e| \mathcal{T}\left\{\mathcal{H}_{W}(x) \mathcal{H}_{W}(y)\right\}|n n\rangle
$$

$$
\propto m_{\beta \beta} \int d^{4} x d^{4} y \Gamma_{\alpha \beta} S_{\nu}(x-y)\langle p p| T\left\{J_{\alpha}(x) J_{\beta}(y)\right\}|n n\rangle
$$

Lepton tensor $\Gamma_{\alpha \beta}=\bar{e} \gamma_{\alpha} P_{L} \gamma_{\beta} e$
Neutrino propagator

Long-distance $0 \nu \beta \beta$ decay

- Induced by light Majorana neutrino exchange.
- Long-distance ME $M^{0 \nu}$ expressed in terms of the
 electroweak Hamiltonian $\mathscr{H}_{W}=2 \sqrt{2} G_{F} V_{u d}\left(\bar{e} \gamma^{\mu} P_{L} \nu_{e}\right) J_{\mu}$.

$$
M^{0 \nu}=\int d^{4} x d^{4} y\langle p p e e| \mathcal{T}\left\{\mathcal{H}_{W}(x) \mathcal{H}_{W}(y)\right\}|n n\rangle
$$

$$
\propto m_{\beta \beta} \int d^{4} x d^{4} y \Gamma_{\alpha \beta} S_{\nu}(x-y)\langle p p| T\left\{J_{\alpha}(x) J_{\beta}(y)\right\}|n n\rangle
$$

Lepton tensor $\Gamma_{\alpha \beta}=\bar{e} \gamma_{\alpha} P_{L} \gamma_{\beta} e$

- Extracting $M^{0 \nu}$ on the lattice requires computing the following 4-point function:

$$
C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)=\sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{\mathrm{snk}}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}(0)\right\rangle
$$

Four-point function

$$
C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)=\sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{\mathrm{snk}}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}(0)\right\rangle
$$

Four-point function

$$
C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)=\sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{\mathrm{snk}}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}(0)\right\rangle
$$

Extracting $M^{0 \nu}$ (Summation method)

- Consider the following summed correlator ratio:

$$
S_{4}\left(t_{\mathrm{snk}} ; \Delta_{\mathrm{s} r c}, \Delta_{\mathrm{s} n k}\right)=\sum_{t_{x}=\Delta_{\mathrm{s} r c}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \sum_{t_{y}=\Delta_{\mathrm{src}}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \frac{C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)}{C_{2}\left(t_{\mathrm{snk}}\right)}
$$

Extracting $M^{0 \nu}$ (Summation method)

- Consider the following summed correlator ratio:

$$
\begin{array}{r}
S_{4}\left(t_{\mathrm{snk}} ; \Delta_{\mathrm{s} r c}, \Delta_{\mathrm{s} n k}\right)=\sum_{t_{x}=\Delta_{\mathrm{s} r c}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \sum_{t_{y}=\Delta_{\mathrm{src}}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \frac{C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)}{C_{2}\left(t_{\mathrm{snk}}\right)} \\
\xrightarrow{0<t_{\mathrm{snk}}-\Delta_{\mathrm{src}}-\Delta_{\mathrm{snk}} \ll T} \text { const. }+\frac{M^{0 \nu}}{2 m_{p p}} t_{\mathrm{snk}}+\text { const. } \times e^{-\delta E\left(t_{\mathrm{snk}}-\Delta_{\mathrm{snk}}-\Delta_{\mathrm{src}}\right)}
\end{array}
$$

Extracting $M^{0 \nu}$ (Summation method)

- Consider the following summed correlator ratio:

$$
\begin{array}{r}
S_{4}\left(t_{\mathrm{snk}} ; \Delta_{\mathrm{s} r c}, \Delta_{\mathrm{s} n k}\right)=\sum_{t_{x}=\Delta_{\mathrm{s} r c}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \sum_{t_{y}=\Delta_{\mathrm{src}}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \frac{C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)}{C_{2}\left(t_{\mathrm{snk}}\right)} \\
\xrightarrow{0 \ll t_{\mathrm{snk}}-\Delta_{\mathrm{src}}-\Delta_{\mathrm{snk}} \ll T} \text { const. }+\frac{M^{0 \nu}}{2 m_{p p}} t_{\mathrm{snk}}+\text { const. } \times e^{-\delta E\left(t_{\mathrm{snk}}-\Delta_{\mathrm{snk}}-\Delta_{\mathrm{src}}\right)}
\end{array}
$$

Desired matrix element is \propto the slope vs. $t_{\text {snk }}$ at large operator separation v.

Extracting $M^{0 \nu}$ (Summation method)

- Consider the following summed correlator ratio:

$$
\begin{array}{r}
S_{4}\left(t_{\mathrm{snk}} ; \Delta_{\mathrm{s} r c}, \Delta_{\mathrm{s} n k}\right)=\sum_{t_{x}=\Delta_{\mathrm{s} r c}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \sum_{t_{y}=\Delta_{\mathrm{src}}}^{t_{\mathrm{snk}}-\Delta_{\mathrm{s} n k}} \frac{C_{4}\left(t_{\mathrm{snk}}, t_{x}, t_{y}, 0\right)}{C_{2}\left(t_{\mathrm{snk}}\right)} \\
\xrightarrow{0<t_{\mathrm{snk}}-\Delta_{\mathrm{src}}-\Delta_{\mathrm{snk}} \ll T} \text { const. }+\frac{M^{0 \nu}}{2 m_{p p}} t_{\mathrm{snk}}+\text { const. } \times e^{-\delta E\left(t_{\mathrm{snk}}-\Delta_{\mathrm{snk}}-\Delta_{\mathrm{src}}\right)}
\end{array}
$$

Desired matrix element is \propto the slope vs. $t_{\text {snk }}$ at large operator separation v.

- We fit the data against two models in the operator separation v, and extract $M^{0 \nu}$ as $2 m_{p p} B$:

1. $f\left(t ; \Delta_{\text {src }}, \Delta_{\text {snk }}\right)=A+B v+C e^{-\delta E v}$.
2. $f\left(t ; \Delta_{\text {src }}, \Delta_{\text {snk }}\right)=A+B v$.

Summed correlator ratio S_{4}

Summed correlator ratio S_{4}

Summed correlator ratio S_{4}

[Preliminary] Long-distance results

- Conversion to GeV yields the preliminary result:

$$
\left|M^{0 \nu}\right|=0.3(\mathrm{X}) \mathrm{GeV}^{2}
$$

- Uncertainties (X) still being quantified.
- Consistent with other fitting methods.
- Expecting errors $\approx 15-20 \%$.

[Preliminary] Long-distance results

- Conversion to GeV yields the preliminary result:

$$
\left|M^{0 \nu}\right|=0.3(\mathrm{X}) \mathrm{GeV}^{2}
$$

- Uncertainties (X) still being quantified.
- Consistent with other fitting methods.
- Expecting errors $\approx 15-20 \%$.
Z. Davoudi, S. Kadam.

Phys. Rev. D 105 (2022) 9, 094502.

- Matching to pionless EFT ($\not \subset E F T$) to extract the low-energy constant $g_{\nu}^{N N}$ is in progress. This matching proceeds as follows:

1. Compute the long-distance amplitude in $\not \subset E F T$ as a function of $g_{\nu}^{N N}$.
2. Match the $\nsubseteq E F T$ amplitude between finite and infinite volume.

[Preliminary] Long-distance results

- Conversion to GeV yields the preliminary result:

$$
\left|M^{0 \nu}\right|=0.3(\mathrm{X}) \mathrm{GeV}^{2}
$$

- Uncertainties (X) still being quantified.
- Consistent with other fitting methods.
- Expecting errors $\approx 15-20 \%$.
- Matching to pionless EFT ($\not \subset E F T$) to extract the low-energy constant $g_{\nu}^{N N}$ is in progress. This matching proceeds as follows:

1. Compute the long-distance amplitude in $\not \subset E F T$ as a function of $g_{\nu}^{N N}$.
2. Match the $\not \subset E F T$ amplitude between finite and infinite volume.

$$
\text { Debate as to whether or not the dineutron is bound at } m_{\pi}=806 \mathrm{MeV} \text {. }
$$

Short distance $0 \nu \beta \beta$ decay

- Hadronic operator basis $\left\{H_{i}\right\}$ mediating the decay at LO splits into five scalar operators $\left\{\mathcal{O}_{k}\right\}$ and four vector operators $\left\{\mathcal{V}_{\ell}\right\}$:

Scalar operators

$$
\begin{aligned}
\mathcal{O}_{1} & =\left(\bar{u} \gamma^{\mu} P_{L} d\right)\left[\bar{u} \gamma_{\mu} P_{R} d\right] \\
\mathcal{O}_{1^{\prime}} & =\left(\bar{u} \gamma^{\mu} P_{L} d\right]\left[\bar{u} \gamma_{\mu} P_{R} d\right) \\
\mathcal{O}_{2} & =\left(\bar{u} P_{L} d\right)\left[\bar{u} P_{L} d\right]+(L \leftrightarrow R) \\
\mathcal{O}_{2^{\prime}} & =\left(\bar{u} P_{L} d\right]\left[\bar{u} P_{L} d\right)+(L \leftrightarrow R) \\
\mathcal{O}_{3} & =\left(\bar{u} \gamma^{\mu} P_{L} d\right)\left[\bar{u} \gamma_{\mu} P_{L} d\right]+(L \leftrightarrow R)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vector operators } \\
& \mathcal{V}_{1}^{\mu}=\left(\bar{u} \gamma^{\mu} P_{L} d\right)\left[\bar{u} P_{R} d\right]+(L \leftrightarrow R) \\
& \mathcal{V}_{2}^{\mu}=\left(\bar{u} t^{a} \gamma^{\mu} P_{L} d\right)\left[\bar{u} t^{a} P_{R} d\right]+(L \leftrightarrow R) \\
& \mathcal{V}_{3}^{\mu}=\left(\bar{u} \gamma^{\mu} P_{L} d\right)\left[\bar{u} P_{L} d\right]+(L \leftrightarrow R) \\
& \mathcal{V}_{4}^{\mu}=\left(\bar{u} t^{a} \gamma^{\mu} P_{L} d\right)\left[\bar{u} t^{a} P_{L} d\right]+(L \leftrightarrow R)
\end{aligned}
$$

Extracting $\langle p p| H_{i}|n n\rangle$

- The short-distance ME is $\langle p p| H_{i}|n n\rangle$; it can be extracted from the correlator:

$$
C_{i}(t, \tau)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{z}}\left\langle\mathcal{O}_{p p}(\mathbf{y}, t) H_{i}(\mathbf{x}, \tau) \mathcal{O}_{n n}^{\dagger}(\mathbf{z}, 0)\right\rangle
$$

Extracting $\langle p p| H_{i}|n n\rangle$

- The short-distance ME is $\langle p p| H_{i}|n n\rangle$; it can be extracted from the correlator:

$$
C_{i}(t, \tau)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{z}}\left\langle\mathcal{O}_{p p}(\mathbf{y}, t) H_{i}(\mathbf{x}, \tau) \mathcal{O}_{n n}^{\dagger}(\mathbf{z}, 0)\right\rangle
$$

$$
R_{i}(t, \tau)=\frac{C_{i}(t, \tau)}{C_{2}(t)}
$$

$$
\xrightarrow{0 \ll \tau<t<t} 2 m_{p p}\langle p p| H_{i}|n n\rangle
$$

Wall source

Extracting $\langle p p| H_{i}|n n\rangle$

- The short-distance ME is $\langle p p| H_{i}|n n\rangle$; it can be extracted from the correlator:

$$
C_{i}(t, \tau)=\sum_{\mathbf{y}, \mathbf{x}, \mathbf{z}}\left\langle\mathcal{O}_{p p}(\mathbf{y}, t) H_{i}(\mathbf{x}, \tau) \mathcal{O}_{n n}^{\dagger}(\mathbf{z}, 0)\right\rangle
$$

$$
\begin{aligned}
& R_{i}(t, \tau)=\frac{C_{i}(t, \tau)}{C_{2}(t)} \\
& \quad \xrightarrow{0 \ll \tau \ll t \ll T} 2 m_{p p}\langle p p| H_{i}|n n\rangle
\end{aligned}
$$

- Fit $R_{i}(t, \tau)$ with model:

$$
f(t, \tau)=A+B e^{-\delta t}+C e^{-\delta(t-\tau)}
$$

Fits to $R_{i}(t, \tau)$ (scalar)

 Shaded band $=2 m_{p p}\langle p p| \mathcal{O}_{k}|n n\rangle$

[Preliminary] Short-distance results

- All operators will be renormalized in $\overline{\mathrm{MS}}$ at 3 GeV .
- Renormalization coefficients for the scalar operators are computed; vector operator renormalization calculation ongoing.

[Preliminary] Short-distance results

- All operators will be renormalized in $\overline{\mathrm{MS}}$ at 3 GeV .
- Renormalization coefficients for the scalar operators are computed; vector operator renormalization calculation ongoing.
- Uncertainties (X) for all matrix elements still being quantified, $\approx 10-20 \%$.
- Scalar operators (renormalized, units in $10^{-2} \mathrm{GeV}^{4}$):

H_{i}	\mathcal{O}_{1}	$\mathcal{O}_{1^{\prime}}$	\mathcal{O}_{2}	$\mathcal{O}_{2^{\prime}}$	\mathcal{O}_{3}
$\langle p p\| H_{i}\|n n\rangle$	$-0.1(\mathrm{X})$	$-1.5(\mathrm{X})$	$-1.5(\mathrm{X})$	$-0.5(\mathrm{X})$	$-3.1(\mathrm{X})$

- Vector operators (bare, units in $10^{-2} \mathrm{GeV}^{4}$):

H_{i}	\mathcal{V}_{1}	\mathcal{V}_{2}	\mathcal{V}_{3}	\mathcal{V}_{4}
$\langle p p\| H_{i}\|n n\rangle$	$-1(\mathrm{X})$	$-0.2(\mathrm{X})$	$-0.2(\mathrm{X})$	$-0.4(\mathrm{X})$

Conclusion

- We have presented preliminary results for the long- and short-distance contributions to the $n^{0} n^{0} \rightarrow p^{+} p^{+} e^{-} e^{-}$decay.
- First LQCD calculation of $0 \nu \beta \beta$ decay in a nuclear system.
- Many systematics (fits, renormalization) still under investigation.
- Final matrix elements will be matched to $\not \subset E F T$.

Conclusion

- We have presented preliminary results for the long- and short-distance contributions to the $n^{0} n^{0} \rightarrow p^{+} p^{+} e^{-} e^{-}$decay.
- First LQCD calculation of $0 \nu \beta \beta$ decay in a nuclear system.
- Many systematics (fits, renormalization) still under investigation.
- Final matrix elements will be matched to $\not \subset E F T$.

W. Detmold

Z. Fu

A. Grebe

W. Jay

D. Murphy

P. Shanahan

Backup slides

Stability plots for $M^{0 \nu}$

Long-distance crosschecks

Summation Method

(linear)
Summation Method (linear + exponential)
Summation-method average (AIC weight)
Global-fit average (AIC weights)
(\$) Global-fit average (uniform weights) Sequential fitting strategy

Nuclear Matrix Elements (NMEs)

- Theoretical inputs necessary to understand $0 \nu \beta \beta$ decay are NMEs:

- Current estimates of NMEs are computed using many-body nuclear physics.

Above: long-distance NMEs for $0 \nu \beta \beta$ decay.
Dolinski et. al., nucl-ex/1902.04097 (2019)

Previous studies

- Previous LQCD $0 \nu \beta \beta$ decay studies have focused on extracting the $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$ transition amplitude.

- Mesonic system \Longrightarrow simple enough for controlled continuum extrapolation.
- $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$matrix elements are necessary input to nuclear EFTs.

Neutrino propagator

- The neutrino mass $m_{\beta \beta}$ directly gives a measure of lepton-number violation:

$$
\begin{aligned}
\frac{1}{\not p-m_{\beta \beta}} & =\frac{{ }^{0}+m_{\beta \beta}}{p^{2}-m_{\beta \beta}^{2}} \longrightarrow m_{\beta \beta} \frac{1}{p^{2}} \equiv m_{\beta \beta} S_{\nu}\left(p^{2}\right) \\
& \Longrightarrow S_{\nu}(x-y)=\frac{1}{4 \pi^{2}(x-y)^{2}}
\end{aligned}
$$

- The finite-volume neutrino propagator S_{ν} is singular as $x \rightarrow y$ and is regulated by subtracting the zero-mode contribution:

$$
m_{\beta \beta} S_{\nu}(\mathbf{z}, \tau)=\frac{m_{\beta \beta}}{2 L^{3}} \sum_{\mathbf{q} \neq \mathbf{0}} \frac{e^{i \mathbf{q} \cdot \mathbf{z}}}{|\mathbf{q}|} e^{-|\mathbf{q}||\tau|}
$$

> Z. Davoudi, S. Kadam.
hep-lat/2012.02083 (2020)

Extracting $M^{0 \nu}$

- Extracting $M^{0 \nu}$ on the lattice requires computing the following 4-point function:

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

- $M^{0 \nu}$ can be expressed as an integral over the operator separation time v :

$$
M^{0 \nu}=2 m_{p p} \int_{\mathbb{R}} d v R(v) \quad R(v)=\lim _{t_{+} \rightarrow \infty} \lim _{-\rightarrow-\infty} \frac{C_{4}\left(t_{+}, 0, v, t_{-}\right)}{C_{2}\left(t_{+}-t_{-}\right)}
$$

Correlation function data

Extracting $R(v)$

- Excited state contamination from sink \gg contamination from source.

Extracting $R(v)$

- Excited state contamination from sink \gg contamination from source.
- Model contamination from sink with functional form:

Below: C_{4} / C_{2} ratio for $v=1$, as
a function of $\Delta_{\text {snk }}$.

$$
\begin{gathered}
f\left(v, \Delta_{\text {snk }}\right)=R(v)+A(v) \exp \left(-\delta E \Delta_{\mathrm{snk}}\right) \\
\text { Energy gap for 1st excited state }
\end{gathered}
$$

- Fits are performed with all data $\Delta_{\text {snk }} \geq \Delta_{\text {snk }}^{\mathrm{cut}}$, where $\Delta_{\text {snk }}^{\mathrm{cut}} \in\{1,2, \ldots, 6\}$.
- Different fits are combined in a weighted average using an AIC weight.

$$
w_{f} \propto \frac{1}{\sigma_{R_{f}(v)}^{2}} e^{2 n_{\mathrm{p}}-\chi^{2}}
$$

Extracting $R(v)$

- Excited state contamination from sink \gg contamination from source.
- Model contamination from sink with functional form:

Below: C_{4} / C_{2} ratio for $v=1$, as
a function of $\Delta_{\text {snk }}$.

Energy gap for 1st excited state

- Fits are performed with all data
$\Delta_{\text {snk }} \geq \Delta_{\text {snk }}^{\mathrm{cut}}$, where $\Delta_{\text {snk }}^{\mathrm{cut}} \in\{1,2, \ldots, 6\}$.
- Different fits are combined in a weighted average using an AIC weight.

$$
w_{f} \propto \frac{1}{\sigma_{R_{f}(v)}^{2}} e^{2 n_{\mathrm{p}}-\chi^{2}}
$$

$R(v)$ (sequential fit)

$\Delta_{\text {snk }}=3$
$\Delta_{\text {snk }}=4$
$\Delta_{\text {snk }}=5$
$\Delta_{\text {snk }}=6$
$\Delta_{\text {snk }}=7$
$\Delta_{\text {snk }}=8$
$\Delta_{\text {snk }}=9$
$\Delta_{\text {snk }}=10$
$\Delta_{\text {snk }}=11$
$\Delta_{\text {snk }}=12$
$\Delta_{\text {snk }}=13$
$R(v)$
Fit to $R(v)$

Fits to $R_{i}(t, \tau)$ (vector)

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Wall source

Point sink

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Four-point function contractions

$$
C_{4}\left(t_{+}, t_{x}, t_{y}, t_{-}\right) \equiv \sum_{\mathbf{x}, \mathbf{y}} S_{\nu}(x-y) \Gamma_{\alpha \beta}\left\langle\mathcal{O}_{p p}\left(t_{+}\right) J_{\alpha}(x) J_{\beta}(y) \mathcal{O}_{n n}^{\dagger}\left(t_{-}\right)\right\rangle
$$

Renormalization

- Renormalize matrix elements in $\overline{\mathrm{MS}}$ at 3 GeV .
- Compute in RI/sMOM scheme and perturbatively match to $\overline{\mathrm{MS}}$.
- Operators with the same quantum numbers mix under renormalization.
- Vector operators and scalar operators renormalize separately. For the scalars:

$$
\mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left(x ; \mu^{2}, a\right)=Z_{k \ell}^{\overline{\mathrm{MS}}}\left(\mu^{2}, a\right) \mathcal{O}_{\ell}^{(0)}(x ; a)
$$

Renormalization

- Renormalize matrix elements in $\overline{\mathrm{MS}}$ at 3 GeV .
- Compute in RI/sMOM scheme and

With chiral symmetry:

Diagonals: order 1 numbers perturbatively match to $\overline{\mathrm{MS}}$.

- Operators with the same quantum numbers mix under renormalization.
- Vector operators and scalar operators
renormalize separately. For the scalars:
- Vector operators and scalar operators
renormalize separately. For the scalars:

Off-diagonals: small

$$
\mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left(x ; \mu^{2}, a\right)=Z_{k \ell}^{\overline{\mathrm{MS}}}\left(\mu^{2}, a\right) \mathcal{O}_{\ell}^{(0)}(x ; a)
$$

Renormalization

- Renormalize matrix elements in $\overline{\mathrm{MS}}$ at 3 GeV .
- Compute in RI/sMOM scheme and

Without chiral symmetry:
Diagonals: order 1 numbers
Off-diagonals: small perturbatively match to $\overline{\mathrm{MS}}$.

- Operators with the same quantum numbers mix under renormalization.
- Vector operators and scalar operators renormalize separately. For the scalars:

$$
\mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left(x ; \mu^{2}, a\right)=Z_{k \ell}^{\overline{\mathrm{MS}}}\left(\mu^{2}, a\right) \mathcal{O}_{\ell}^{(0)}(x ; a)
$$

Chirally disallowed
components \propto scale of explicit chiral sym. breaking

Renormalization

- Renormalize matrix elements in $\overline{\mathrm{MS}}$ at 3 GeV .
- Compute in RI/sMOM scheme and

Without chiral symmetry:

 Diagonals: order 1 numbersOff-diagonals: small perturbatively match to $\overline{\mathrm{MS}}$.

- Operators with the same quantum numbers mix under renormalization.
- Vector operators and scalar operators renormalize separately. For the scalars:

$$
\mathcal{O}_{k}^{\overline{\mathrm{MS}}}\left(x ; \mu^{2}, a\right)=Z_{k \ell}^{\overline{\mathrm{MS}}}\left(\mu^{2}, a\right) \mathcal{O}_{\ell}^{(0)}(x ; a)
$$

- $Z_{k \ell}^{\overline{\mathrm{MS}}}$ computed for the scalar operators. Vector operators still components \propto scale of ongoing (computing perturbative matching coefficients).

RI/sMOM scheme

- Renormalization condition at scale μ : For an operator with $n-1$ quark fields, impose that its renormalized, amputated n-point function equals its tree level value at kinematical point $p_{1}^{2}=p_{2}^{2}=\left(p_{2}-p_{1}\right)^{2}=\mu^{2}$.
- Example: vector current $V_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)$:
\Longrightarrow Allows us to solve for Z factors!

RI/sMOM details

- RI/sMOM renormalization coefficients computed from the following correlation functions

$$
\left(G_{n}\right)_{a b c d}^{\alpha \beta \gamma \delta}\left(q ; a, m_{\ell}\right) \equiv \frac{1}{V} \sum_{x} \sum_{x_{1}, \ldots, x_{4}} e^{i\left(p_{1} \cdot x_{1}-p_{2} \cdot x_{2}+p_{1} \cdot x_{3}-p_{2} \cdot x_{4}+2 q \cdot x\right)}\langle 0| \bar{d}_{d}^{\delta}\left(x_{4}\right) u_{c}^{\gamma}\left(x_{3}\right) Q_{n}(x) \bar{d}_{b}^{\beta}\left(x_{2}\right) u_{a}^{\alpha}\left(x_{1}\right)|0\rangle
$$

Matching to $\overline{\mathrm{MS}}$

- Must match to a scheme useful for phenomenology: $\overline{\mathrm{MS}}$
Compute $Z_{i j}^{\mathrm{RI}}$ at some scale μ_{0} with

Minimize discretization artifacts

$\mu_{1}=3 \mathrm{GeV}$
$\mu_{0}^{24 \mathrm{I}}=2.64 \mathrm{GeV}$
$\mu_{0}^{32 \mathrm{I}}=2.65 \mathrm{GeV}$

Perturbative

Scalar renormalization coefficients

$$
\begin{gathered}
\mathcal{O}_{1} \\
\mathcal{O}_{2}
\end{gathered} \mathcal{O}_{3} \quad \mathcal{O}_{1}^{\prime} \quad\left(\begin{array}{c}
\mathcal{O}_{2}^{\prime} \\
\left(\begin{array}{ccccc}
1.052858(50) & -0.053108(43) & -0.030135(27) & -0.022902(46) & 0.005743(11) \\
0.0009582(80) & 1.149495(86) & 0.0087372(66) & -0.121115(95) & -0.036316(61) \\
-0.15173(13) & 0.051102(41) & 1.012623(59) & 0.012361(13) & 0.040269(29) \\
-0.085598(83) & -0.17768(14) & -0.012271(11) & 1.233651(87) & 0.009177(12) \\
0.0026951(82) & 0.009634(41) & 0.0046114(34) & 0.023611(20) & 1.139097(57)
\end{array}\right)
\end{array}\right.
$$

